
Smoke Forecasting With a Coupled
Fire-Atmosphere Model

Adam Kochanski, Department of Meteorology and Climate Science, San Jose State University

Newsletter

Fall 2021
Smoke Forecasting With a Coupled Fire-Atmosphere Model
Setting Up Community Containers in the User Space
R Version Updated
Managing Your Own Software Installations Using Anaconda
Python Version 3.9.7 Available

The number of large wildfires has been steadily increas-
ing since the early 1980s, and it is suspected that

wildfire smoke is responsible for deteriorating air qual-
ity across the western U.S. Wildfire intensity is projected
to increase through the end of the 21st century due to
climate change, which is increasing temperatures, exac-
erbating drought conditions, and accelerating springtime
snow melt. Similarly, smoke emissions from wildfires
are also expected to increase in the coming decades and
will continue to deteriorate air quality across the western
U.S. Wildfire smoke consist of small particulates with
a diameter less that 2.5 microns (PM2.5), and secondary
pollutants such as ozone, both of which can degrade air
quality and be harmful when inhaled by humans. Across
the globe, an estimated 3.3 million deaths per year can
be linked to poor air quality. According to the World
Health Organization, 92% of the world’s population
lives in regions where the air is considered unhealthy.
Smoke emitted from biomass burning is estimated to
be responsible for 5% of all air quality-related deaths.
Furthermore, the toxicity of wildfire smoke is higher
relative to other sources of atmospheric pollutants. With
smoke emissions projected to increase across the west-
ern U.S., tools are needed that can forecast fire growth,
fire behavior, and smoke dispersion for fire management
operations and for limiting human exposure to poor air
quality.

Forecasting Wildfires and Smoke with Computer
Simulations

 Numerical weather prediction models are power-
ful tools that can forecast the future state of the atmo-
sphere using mathematical equations that describe how
air moves and how heat and moisture are exchanged

throughout the atmosphere. Today, weather prediction
models have evolved such that they can simulate me-
teorology with high fidelity and resolve meteorolog-
ical phenomena at sub-kilometer grid scales. Recent
advances in computing technology has facilitated the
development and deployment of a new generation of
weather and fire forecasting tools; namely, coupled-fire
atmosphere models. Coupled fire-atmosphere models
can simultaneously forecast meteorology and wildfire
growth. In these models, the weather can impact fire
growth rates, while energy released by the wildfire also
affects local meteorology by modifying near-fire winds
and creating a buoyant smoke plume over the fire, i.e.,
the wildfire plume rise. Coupled fire-atmosphere models
can also forecast fuel moisture conditions, which greatly
influences fire growth rates and fire behavior, and chem-
ical interactions between the smoke and other pollutants
in the atmosphere.

 WRF-SFIRE-CHEM is a state-of-the-art coupled
fire atmosphere model integrated with chemistry, which
couples the National Center of Atmospheric Research
(NCAR)’s Weather Research and Forecast model (WRF-
CHEM) with a fire spread model (SFIRE). WRF-SFIRE
is a community, open-source model (https://wiki.open-
wfm.org/) that parameterizes fire progression using a
two-dimensional semi-empirical rate-of-spread model.
The fire spread model within WRF-SFIRE accounts for
the effects of wind, fuel moisture, fuel type, and slope
on fire behavior. Further updates were made to WRF-
SFIRE that allows the model to estimate smoke emis-
sions based on the amount and type of vegetation that is
consumed by the fire. Smoke emissions produced by the
wildfire are then lofted upwards by the buoyant wild-
fire plume rise and detrained into the free atmosphere.

Derek V. Mallia, Department of Atmospheric Science, University of Utah

https://wiki.openwfm.org/
https://wiki.openwfm.org/

2 Fall 2021

Much of WRF-SFIRE’s early devel-
opment, testing, and data analysis was
carried out on CHPC’s Kingspeak clus-
ter, where simulated coupled fire-atmo-
sphere simulations used approximately
196 cores and took approximately 3.5
hours to generate a 24-hour forecast.
WRF-SFIRE simulations can take up
anywhere between 25 to 100 GB of
disk space, depending on the size of
the run. CHPC computing resources
are still used today for WRF-SFIRE
model development and research ap-
plications.

WRF-SFIRE was used to forecast
large wildfire incidents in Utah such
as the Pole Creek Fire, which burned
over 100,000 acres. During the 2020 fire season cou-
pled fire-atmosphere forecasts were run for multiple
2020 California lightning fires such as CZU Complex,
SCU complex and Caramel fire. This year, WRF-SFIRE
simulations were generated at San Jose State University
Wildfire Interdisciplinary Research Center, which tar-
geted the Dixie, Caldor, McCash, and KNP Complex
fires (Figure 1). Smoke and visibility range forecasts
from WRF-SFIRE were shared with incident command-
ers and air quality advisors to assist with firefighting and
aircraft operations. Currently, WRF-SFIRE forecasts are
automated with a sophisticated system that assimilates
fuel moisture observations, satellite detections and air-
craft fire observations, and executes forecasts on two
dedicated computing clusters with over a thousand of
processors.

Figure 1. WRF-SFIRE forecast for the Caldor Fire in
California during the 2021 wildfire season.

Figure 2. WRF-SFIRE forecasted surface smoke con-
centrations (PM2.5) from the 2018 Pole Creek Fire near
Salt Lake City, Utah (yellow star) during the early morn-
ing of September 15th, 2018. Color-filled contours rep-
resent model simulated smoke concentrations while the
color-filled circles represent smoke measurement from
low-cost sensors. The black arrows represent modeled
winds from WRF while the white polygon depicts the lo-
cation of the fire. Modified from Mallia et al. 2020a.

To evaluate the performance of WRF-SFIRE, we
leveraged the University of Utah’s Air Quality and
yoU (AQ&U) network, which consisted of 509 sensor
nodes throughout northern Utah. These measurements
were used to evaluate the timing and intensity of the
smoke episode, along with the shape and orientation of

the smoke plume. Results from this analysis
found that WRF-SFIRE was able to capture
the shape of the smoke plume as smoke was
carried from the fire through Spanish Fork
Canyon (Figure 2). Nighttime drainage flow
originating from Spanish Fork Canyon then
advected smoke towards Utah Lake, and sub-
sequently around Point of The Mountain and
into the Salt Lake Valley, before being car-
ried northward towards Idaho. While WRF-
SFIRE was able to capture the timing and
shape of the smoke plume, forecasted smoke
concentrations for the SLV were overesti-
mated by ~20%. Further analyses revealed
that WRF-SFIRE overestimated fire growth,
which subsequently resulted in over predict-
ed fuel consumption and smoke emissions.

An update was recently made to WRF-SFIRE, which
improved how winds were represented within forest

3Center for High Performance Computing

Recent operational forecasts performed using WRF-
SFIRE are available at: https://www.sjsu.edu/wildfire/
wildfire-information.php.

References:
Mallia, D. V., A. Kochanski, K. E. Kelly, R. Whitaker, W. Xing, L.

Mitchell, A. Jacques, A. Farguell, J. Mandel, P.-E. Gaillardon, T. Bec-
nel, and S. Krueger (2020a): Evaluating wildfire smoke transport
within a coupled fire-atmosphere model using a high-density
observation network for an episodic smoke event along Utah’s
Wasatch Front. J. Geophys. Res., 125, e2020JD032712.

Mallia, D. V., A. Kochanski, S. Urbanski, J. Mandel, A. Farguell,
and S. Krueger (2020b): Incorporating a canopy parameterization
within a coupled fire-atmosphere model to improve a smoke sim-
ulation for a prescribed burn. Atmosphere, 11(8), 832.

Setting up Community Containers
in the User Space
Martin Cuma, CHPC Scientific Consultant

Computation applications are becoming increasingly
complex to install, with many dependent programs and
libraries. CHPC often installs these applications manu-
ally, or with the Spack package manager (https://spack.
readthedocs.io/en/latest/). Oftentimes, however, before
we take the native installation path, we first check to see
if there is a container that provides the needed applica-
tion. Using a program from a container can be easier
since someone else has done the difficult task of building
the program and all its dependencies, and packaged it all
in the container.

Quoting Docker, the pioneer in containerization, doc-
umentation, “A container is a standard unit of software
that packages up code and all its dependencies so the
application runs quickly and reliably from one comput-
ing environment to another. A Docker container image
is a lightweight, standalone, executable package of soft-
ware that includes everything needed to run an applica-
tion: code, runtime, system tools, system libraries and
settings.” (https://www.docker.com/resources/what-con-
tainer).

While CHPC Support Staff will do container installa-
tions for the user upon request, we believe that in many
cases the container installation is simple enough that
some users will be able to do the installation themselves.
Details on this process are provided in this article. For
the purpose of this article the installation of the BLAST,
a popular genomics application, will be used.

Finding a container
There are numerous repositories of community-built

containers, the most popular being DockerHub, https://
hub.docker.com/. Be aware that there may be many dif-

canopies. Preliminary results indicate that adding a canopy
model parameterization within WRF-SFIRE dramatically
improved forecasted fire growth rates, especially for fires
burning in heavily forested areas (Figure 3).

Looking ahead
Coupled fire-atmosphere models are becoming in-

creasingly popular tools for fire and smoke forecasting.
With wildfire activity projected to increase in the coming
decades, it will be crucial to further expand the forecast-
ing capabilities of coupled fire-atmosphere models and
to integrate these models into larger forecasting systems.
Emerging technologies, such as satellite observations will
also play an increasingly important role towards improving
fire and smoke forecasting. For research applications, cou-
pled fire-atmosphere models such as WRF-SFIRE will also
play a crucial role towards better understanding fire behav-
ior, elucidating important chemical mechanisms that con-
trol smoke plume chemistry, and projecting how climate
change might impact wildfires in the future.

WRF-SFIRE’s development and operational forecasts
have utilized CHPC computing resources, and much of the
work that has been achieved here would not have been pos-
sible without the support of CHPC. To learn more about
coupled fire-atmosphere modeling with WRF-SFIRE, the
authors encourage the readers to visit our web page at:
https://wiki.openwfm.org/. To learn more on what Derek is
up to with his research, visit his web page at: https://home.
chpc.utah.edu/~u0703457/dereks_homepage/.

Figure 3. Time series data of the observed fire
growth (solid black line), and the WRF-SFIRE pre-
dicted fire growth with (red dash line) and without
(orange dash line) a canopy model parameteriza-
tion.

https://www.sjsu.edu/wildfire/wildfire-information.php
https://www.sjsu.edu/wildfire/wildfire-information.php
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://hub.docker.com/
https://hub.docker.com/
https://wiki.openwfm.org/
https://home.chpc.utah.edu/~u0703457/dereks_homepage/
https://home.chpc.utah.edu/~u0703457/dereks_homepage/

4 Fall 2021

ferent containers for the application in need so some
scrutiny needs to be used to pick the appropriate one.
While containers in theory run everything in the user
space, eliminating possibly malicious behavior, there
are still occasional vulnerabilities found in the container
runtimes and as such it is important to use only commu-
nity containers from reliable sources. Our approach is to
trust containers from credible sources, such as organiza-
tions, with extra point given if they make available their
container build files. Be cautious about containers built
by individuals without any further information about
how the container was built.

Start with doing an internet search for the applica-
tion in question along with the dock-
erhub keyword, e.g., search with
dockerhub blast. The two top search
returns are ncbi/blast and bio-
containers/blast. Both are good;
NCBI is the creator of the program,
while biocontainers is an organiza-
tion providing containers for bio-
logical sciences. An added benefit
of the biocontainers/blast is that it
provides the Source Repository (in
the right side of the DockerHub web
page – see Figure 1.). Another useful
metric on the trustworthiness of the
container is the Pulls statistic in the
upper right corner of the DockerHub
web page – the number of times this
container has been downloaded. The more the better.
Both containers check this mark as well. Another useful
metric is when was the container last updated. The bio-
containers/blast is older, which may favor the ncbi/
blast if one wants the latest version.

Installing the Container
Before downloading the container, one needs to think

about where to put it. Home directory is a good possibil-
ity, but keep in mind that most home directories have 50
GB quota and containers can get large, in the order of few
GB each, so watch the space they use. Research groups
with purchased group storage will be better served to
keep container images there. We also recommend to put
the containers to a well-defined location, for example in
a directory named containers.

The next step is to choose what container runtimes
to use. There are several, but most have limitations that
make them less fit for HPC use, which is why CHPC
supports Singularity (https://singularity.hpcng.org/). To
create (build) a Singularity container hosted on Docker-
hub, first load the Singularity module. Then copy the last

part of the Docker Pull Command in the Dockerhub
container page, which is the container’s address, and run
the singularity build command. In some cases, like the
biocontainers/blast example, we also need to specify the
build tag. Click on the Tags tab in the DockerHub page,
and copy the container address including the tag:

$ module load singularity
$ singularity build blast.sif docker://biocontain-
ers/blast:v2.2.31_cv2

 The Singularity will download all the container
layers, and build a singularity container in a single file
called blast.sif.

Exploring the Container
After creating the container, it is useful to open a shell

in the container to explore it. That can help with figuring
out where the programs that we need are installed, and
if there’s something else, like databases, that need to be
provided externally.

$ singularity shell blast.sif
Singularity> which makeblastdb
/opt/conda/bin/makeblastdb

Notice that when the shell is in the container, the
prompt has changed to Singularity>, to signalize that
the shell is now using the container. The which com-
mand returns a path to the program in question. This is
helpful to see if the programs we need are indeed found
in the container, or, better to say, are included in the bi-
nary search path. If the needed program is not found,
look through the container file system to try to find it,
focusing on common directories like /opt or /home.

Figure 1. DockerHub webpage for BLAST container
from Biocontainers.

https://singularity.hpcng.org/

5Center for High Performance Computing

Once we have found that the binaries in the container
are there, we can run commands directly from the con-
tainer using the singularity exec command:

$ singularity exec blast.sif makeblastdb -help
USAGE
 makeblastdb [-h] [-help] [-in input_file] [-input_
type type]

The application’s commands executed this way be-
have the same as if they were executed natively.

Creating a Module File
While we can run programs directly from the con-

tainer as shown above, it is cumbersome as one has to
remember to use the singularity command and the path
to the container. What we do when we deploy containers
CHPC-wide is to create a module file that sets up aliases
for select programs from the container, which allows to
map the programs from the container to the outside. The
modules approach also makes it easy to maintain and use
different versions of the program.

We first need to create a custom modules environ-
ment, documented in detail at our help pages (https://
www.chpc.utah.edu/documentation/software/mod-
ules-advanced.php#custom). The first steps are to create
a directory where the modules will be and a subdirectory
here where we put the module for the application we are
installing, followed by adding the module file, based on
the template that we provide:

mkdir ~/MyModules
mkdir ~/MyModules/blast
cp /uufs/chpc.utah.edu/sys/modulefiles/templates/
container-template.lua ~/MyModules/blast/2.2.31.
lua

The first part of the module file, which has the pro-
gram specific information, will need to be modified for
your container:

-- required path to the container sif file
local CONTAINER=”/uufs/chpc.utah.edu/common/home/
u0101881/containers/blast.sif”
-- required text array of commands to alias from
the container
local COMMANDS = {“makeblastdb”,”blastn”,”blast-
p”,”blastx”}

The above two are required entries, with the CON-
TAINER variable being the full path to the container’s SIF
file, and the COMMANDS variable, which list the program
commands in the container that we want to map in the
module. Here we listed the few most commonly used
BLAST commands in order to conserve space, but, there
are about another dozen commands that should be listed

for full functionality.
In addition, you may also want to update the follow-

ing lines:

-- these optional lines provide more information
about the program in this module file
whatis(“Name : BLAST”)
whatis(“Version : 2.2.31+”)
whatis(“Category : genomics”)
whatis(“URL : https://blast.ncbi.nlm.nih.gov”)
whatis(“Installed on : 10/05/2021”)
whatis(“Installed by : Martin Cuma”)

Using Programs from the Container
To activate the user-based container module, add the

user modules path and the load our new container mod-
ule:

$ module use ~/MyModules
$ module load blast/2.2.31

We can then test that the program commands function
and have the correct version:

$ blastp -help
…
DESCRIPTION
 Protein-Protein BLAST 2.2.31+
…

After testing in the terminal, we are ready to create a
SLURM job script to run on our clusters, keeping in mind
that BLAST does allow parallel execution over multiple
threads within a single node. For additional information
on using SLURM on CHPC resources see https://www.
chpc.utah.edu/documentation/software/slurm.php. An
example batch script to do this:

#!/bin/bash
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --account=owner-guest
#SBATCH --partition=kingspeak-guest

module use ~/MyModules
module load blast/2.2.31
MYDIR=`pwd`
curl -O ftp://ftp.ncbi.nih.gov/refseq/D_rerio/
mRNA_Prot/zebrafish.1.protein.faa.gz
gunzip zebrafish.1.protein.faa.gz
makeblastdb -in zebrafish.1.protein.faa -dbtype prot
curl https://www.uniprot.org/uniprot/P04156.fasta
>> P04156.fasta
blastp -query $MYDIR/P04156.fasta -db $MYDIR/
zebrafish.1.protein.faa -num_threads $SLURM_TASKS_
PER_NODE -out results.txt

We can now submit this job by:

$ sbatch blast.slr

https://www.chpc.utah.edu/documentation/software/modules-advanced.php#custom
https://www.chpc.utah.edu/documentation/software/modules-advanced.php#custom
https://www.chpc.utah.edu/documentation/software/modules-advanced.php#custom
https://www.chpc.utah.edu/documentation/software/slurm.php
https://www.chpc.utah.edu/documentation/software/slurm.php

6 Fall 2021

Further Directions
While the approach described above will work for

most programs in containers, there are some containers
that expect certain locations of files or databases which
require more customizations, or that don’t have the exe-
cutables readily available. If you run into problems with
setting up your container or its module file, we will be
happy to help at helpdesk@chpc.utah.edu.

R Version Updated
Wim Cardoen, CHPC Scientific Consultant

The statistical package R has been updated to its lat-
est release v.4.1.1 (”Kick Things”). The CHPC version
has been compiled using gcc 10.2.0 and linked using In-
tel’s MKL library (version 2021.1.1).

The corresponding environment can be loaded as fol-
lows:

module load R/4.1.1

The environmental variable OMP NUM THREADS
has been set to 1 in the LMod module. To fully use its
multi-threaded functionality (e.g. on a compute node)
we recommend to set the aforementioned environmental
variable to the number of available threads/tasks.

On a compute node this would require the following
command:

export OMP_NUM_THREADS=$SLURM_NTASKS # Bash Shell

Or

setenv OMP_NUM_THREADS $SLURM_NTASKS # Tcsh Shell

Additional information on the use of R on CHPC re-
sources can be found at https://www.chpc.utah.edu/doc-
umentation/software/r-language.php.

Managing Your Own Software
Installations Using Anaconda
Brett Milash, CHPC Scientific Consultant

Introduction
As the software environment at high-performance

computing centers becomes more complex, with seem-
ingly countless new software packages and updates be-
coming available daily, the task of managing a central
software catalog becomes nearly impossible, particular-
ly when programs like R and python do not support mul-
tiple different versions of the same libraries. CHPC has
almost 1,700 software modules installed at this point,

and only a handful of those modules are relevant to an
individual user. A solution to this problem is for users to
manage their own software installations as needed. One
of the best tools available to do this now is Anaconda
(https://www.anaconda.com), a freely available package
manager that simplifies installing, updating, and delet-
ing software packages in your own disk space at CHPC.
When coupled with the software module system LMod,
anaconda enables you to install and manage your own
versioned software repository.

Rationale
The rationale for using anaconda with LMod is driven

by several factors: the requirement for a package manag-
er that can handle a wide variety of software packages,
the need to isolate mutually incompatible software pack-
ages, and the desire to maintain multiple versions of the
same package. The combination of anaconda and lmod
meets all these needs. Anaconda.org (https://anaconda.
org) hosts over 7,500 different packages, each package
listing its prerequisites or dependencies. When these
packages are installed each with their own copy of an-
aconda the possibility of package incompatibility is re-
moved. The lmod software module system (https://lmod.
readthedocs.io) provides the capacity to load or unload
software modules in your shell environment, and can do
so while supporting multiple versions of each software
package if desired.

Recommendation
The strategy we recommend is to install a separate

copy of miniconda3, a lightweight version of anacon-
da, with each software package you install, and create a
LMod module to load or unload that package from your
environment.

For illustration purposes, imagine I want to use scikit-
learn (https://scikit-learn.org), a python-based machine
learning tool kit. The steps to install my own copy of
scikit-learn are as follows:

1. Anaconda installation
Download the miniconda3 installer:

$ wget https://repo.continuum.io/miniconda/Mini-
conda3-latest-Linux-x86_64.sh

The above command simply downloads the latest
miniconda3 installer from the repo.continuum.io site
into my current directory. Once the download is com-
pleted, I run the installer:

$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p
$HOME/software/pkg/scikit-learn/1.0 -s

mailto:helpdesk%40chpc.utah.edu?subject=
https://www.chpc.utah.edu/documentation/software/r-language.php
https://www.chpc.utah.edu/documentation/software/r-language.php
https://www.anaconda.com
https://anaconda.org
https://anaconda.org
https://lmod.readthedocs.io
https://lmod.readthedocs.io
https://scikit-learn.org

7Center for High Performance Computing

What do all those arguments mean? The “-b” runs the
installer in batch mode, so no interaction with the script
is necessary. The “-p $HOME/software/pkg/scikit-

learn/1.0” argument installs the software in my $HOME/
software/pkg directory, creating a scikit-learn/1.0 di-
rectory for this particular package. The “-s” argument
prevents the installer from altering my dot files, so my
shell environment will not be changed. We will do that
part through the module file instead. When the installer
is finished, the $HOME/software/pkg/scikit-learn/1.0
directory will have been created, and it will contain just
over 300 Mb of software for the miniconda3 installation
(compared to many gigabytes for a full anaconda instal-
lation).

2. Module creation and activation
Next, I need to create and load a module file for the

package. The module file is responsible for setting up
my shell environment when I load the module and re-
storing my environment when I unload the module. To
do this I need to instruct the module system to use my
module files, create a directory for my new module file,
and download the CHPC’s template module file:

$ module use $HOME/MyModules
$ mkdir -p $HOME/MyModules/scikit-learn
$ cd $HOME/MyModules/scikit-learn
$ wget https://raw.githubusercontent.com/CHPC-
UofU/anaconda-modules/master/miniconda3/latest.
lua
$ mv latest.lua 1.0.lua

Notice I’ve renamed the template file to “1.0.lua”
since I am installing version 1.0 of scikit-learn. Finally, I
need to change one location in the template file, to point
to my software install location. This location is on line 7
of the file. I need to change:

local myanapath = “software/pkg/miniconda3”

to

local myanapath = “software/pkg/scikit-learn/1.0”

This is the same location I specified when I ran the
miniconda3 installer above.

Now I load the module, and confirm that it has load-
ed:

$ module load scikit-learn/1.0
$ which conda
~/software/pkg/scikit-learn/1.0/bin/conda

Here I can see that the “conda” command that I’m
running is in the miniconda installation that I just creat-

ed. So far so good.

3. Package installation
Following the scikit-learn instructions, I install the

software with the conda command:

$ conda install -c conda-forge scikit-learn

When the installation has completed, I can see the
“python” I’m executing is from the scikit-learn/1.0 di-
rectory I’ve created, and that when I import the sklearn
module, it is coming from within the same directory tree,
by doing the following command:

$ which python
~/software/pkg/scikit-learn/1.0/bin/python
$ python
Python 3.9.7 | packaged by conda-forge | (default,
Sep 29 2021, 19:20:46)
[GCC 9.4.0] on linux

Type “help”, “copyright”, “credits” or “license”
for more information.

>>> import sklearn
>>> sklearn.__file__
‘…/software/pkg/scikit-learn/1.0/lib/python3.9/
site-packages/sklearn/__init__.py’

4. Software use
With the module created and loaded, and software in-

stalled, the executable programs’ directory will be on my
PATH environment variable, and thus the executables
are easily found by the shell when I execute them. In this
example that executable is python, since scikit-learn is a
library used in python scripts, but other anaconda pack-
ages include multiple executable programs that will be
installed, so this strategy is not just for python.

 When I want to use sckit-learn in future sessions, all I
need to do is execute the “module use $HOME/MyModules”
and “module load scikit-learn/1.0” commands to ac-
cess this module. When I’m finished with scikit-learn
I can execute “module unload scikit-learn” to remove
it from my environment. Many users will place the “mod-
ule use $HOME/MyModules” command in their “.custom.
sh” or “.custom.csh” file for convenience, especially if
they plan on using scikit-learn regularly.

5. Managing updates
If scikit-learn is updated, I can repeat this process to

create separate installations for version 1.1, 1.2, 2.0, and
so on, that are completely independent of version 1.0.
This capability allows for the preservation of my exist-
ing software environment while I experiment with the

Please acknowledge the use of CHPC Resources

Please submit copies or citations of dissertations, reports, pre-prints, and reprints in which CHPC is acknowledged
by sending to helpdesk@chpc.utah.edu.

The University of Utah
University Information Technology

Center for High Performance Computing
155 South 1452 East, Room 405
SALT LAKE CITY, UT 84112–0190

new version.

6. Use of group space
Many research groups have shared group disk space

at CHPC, and this space can be used for software instal-
lations as well. The only changes that need to be made
to use this space are to create and use a shared software
directory for miniconda installations, create and use a
shared module directory for LMod module files, and ex-
ecute the “module use” command to select that shared
module directory.

Experienced anaconda users may have noticed we
are not suggesting the use of conda environments. These
environments allow multiple software packages to “pig-
gyback” on a single miniconda installation, reducing
the disk space overhead, and requiring “activation” or
“deactivation” similar to LMod modules. In our expe-
rience, however, conda environments create a confusing
situation where the software install location is not read-
ily apparent, make for more complex LMod modules,
and do not always work well for tcsh users. As the disk
space overhead of a miniconda installation is only 300
Mb, we feel that software installations without conda en-
vironments is a better solution.

Locating software
Software that is installed by anaconda can be found

at https://anaconda.org. Many bioinformatics packages
are available at https://anaconda.org/bioconda/.

Caveats
Some conda installations run into problems, most

frequently due to package version number conflicts. In
these cases it is possible to install packages using “pip”
(for python packages) or from source code, using the fa-
miliar “configure / make / make install” procedure.
For such source code installations it will be necessary
to use the “configure --prefix” argument to specify the
install location.

Python Version 3.9.7 Available
Wim Cardoen, CHPC Scientific Consultant

Python version 3.9.7 (Released on August 30, 2021)
was installed within the /uufs tree. The distribution was
compiled with gcc version 10.2.0.

Within the distribution an array of scientific pack-
ages were installed. Among them the latest versions of
NumPy, Scipy, MatplotLib, Jupyter, Pandas, SymPy, ..
which were all built with the Intel MKL library for per-
formance.

To load Python 3.9.7:
module load python/3.9.7

Additional information on the use of python on CHPC
resources can be found at https://www.chpc.utah.edu/
documentation/software/python-anaconda.php.

If you use CHPC computer time or staff resources, we request that you acknowledge this in technical reports, publi-
cations, and dissertations. An example of what we ask you to include in your acknowledgement is:

 “A grant of computer time from the Center for High Performance Computing is gratefully acknowl-
edged.”

If you make use of the CHPC Protected Environment, please also acknowledge the NIH shared instrumentation
grant:
 “The computational resources used were partially funded by the NIH Shared Instrumentation Grant
1S10OD021644-01A1.”

mailto:helpdesk%40chpc.utah.edu?subject=Response%20to%20newsletter
https://anaconda.org
https://anaconda.org/bioconda/
https://www.chpc.utah.edu/documentation/software/python-anaconda.php
https://www.chpc.utah.edu/documentation/software/python-anaconda.php

