
Our lab has developed a new statistical method, called 
“Legofit,” which uses genetic data to estimate the his-

tory of population size, subdivision, and gene flow [1]. Our 
recent publications have used it to study human evolution 
over the past 2 million years [2, 3, 4].

Legofit studies the frequencies of “nucleotide site pat-
terns,” which are illustrated in Fig. 1. The solid black lines 
and arrows represent a network of populations. The dashed 
and colored lines show one of many possible gene geneal-
ogies that might occur at different nucleotide sites within 
the genome. Upper-case letters refer to populations. X rep-
resents an African population (the Yorubans), Y a European 
population, A Altai Neanderthals, and D Denisovans. S is 
an unsampled “superarchaic” population that is distantly 
related to other humans. Lowercase letters at the bottom of 
Fig. 1 label nucleotide site patterns. A nucleotide site exhib-
its pattern xya if random nucleotides sampled from X, Y, 
and A carry the derived allele, but those sampled from other 
populations are ancestral. Site pattern probabilities can be 
calculated from models of population history, and their 
frequencies can be estimated from data. Legofit estimates 
parameters by fitting models to these relative frequencies.

Nucleotide site patterns contain only a portion of the 
information available in genome sequence data. This por-
tion, however, is of particular relevance to the study of deep 
population history. Site pattern frequencies are unaffected 
by recent population history because they ignore the with-
in-population component of variation [1]. This reduces the 
number of parameters we must estimate and allows us to 
focus on the distant past.

Figure 2 shows a set of site pattern frequencies. The 
largest effects in these data are the least interesting: single-
ton site patterns (x, y, a, and d) are common because each 
of the populations has a long history of independent evolu-

tion, xy is common because Africans (X) and Europeans (Y) 
are both populations of modern humans and therefore share 
ancestors; ad is common for the same reason.

The interesting effects are more subtle. Notice that ya is 
more common than xa, xd, or yd. This is because Europe-
ans have some Neanderthal ancestors [8]. Notice also that 
d is more common than the other singleton site patterns and 
that xya is more common than the other tripletons. This is 
the signature of superarchaic admixture into Denisovans, 
as explained in Fig. 1: mutations on the red branch inflate 
the frequency of d and those on the blue branch inflate xya.

In fitting models to site pattern frequencies, we use a 
numerical algorithm—differential evolution [DE, 9]—to 
maximize a composite likelihood function. DE maintains a 
swarm of points, each representing a set of parameter val-
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Figure 1: A population network including four episodes of gene 
flow, with an embedded gene genealogy. Uppercase letters (X, Y, 
A, D, and S) represent populations (Africa, Europe, Altai Neanderthal, 
Denisovan, and superarchaic). Greek letters label episodes of admixture. 
d and xya illustrate two nucleotide site patterns, in which 0 and 1 repre-
sent ancestral and derived alleles. A mutation on the red branch would 
generate site pattern d. One on the blue branch would generate xya.
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ues. The number of points is 10 times the number of free 
parameters. In recent work, our models involve nearly 20 
parameters, so there are nearly 200 points in the swarm. In 
each DE iteration, the composite likelihood of each point is 
estimated by computer simulation. These simulations run 
in separate threads of execution on a single CHPC node.

To estimate uncertainty, we use a moving blocks boot-
strap [5], which resamples blocks of nucleotides. Each 
bootstrap replicate runs on a separate CHPC node, admin-
istered by a Slurm array. By parallelizing both across nodes 
and across threads within nodes, we can potentially accel-
erate these calculations by about 2,000-fold, depending on 
the availability of nodes and the number of cores per node.

To choose among models, we use the bootstrap esti-
mate of predictive error [bepe, 10, 11]. Bepe is analogous 
to cross-validation, but uses bootstrap replicates instead of 
partitions of the data. We also use bootstrap model averag-
ing [booma, 12], which assigns weights to each model based 
on the fraction of replicates (including the real data and 50 
bootstrap replicates) in which that model “wins”—that is, 
has the lowest value of bepe. Booma deals with problems 
of statistical identifiability by broadening confidence inter-
vals to include uncertainty about the model itself.

We first used Legofit in 2017 to argue that Neander-
thals and Denisovans separated early, that their neanderso-
van ancestors endured a bottleneck of population size, and 
that the post-separation Neanderthal population was large 
[2]. That analysis omitted “singleton” site patterns—those 
in which the derived (or mutant) allele is present only in 
the sample from one population. Mafessoni and Prüfer 
[13] pointed out that introducing singletons led to differ-
ent results. In response Rogers et al. [3] agreed, but also 

observed that the with-singleton analysis implied that the 
Denisovan fossil was only 4,000 years old—a result that 
is plainly wrong. Furthermore, a residual analysis showed 
that neither of the models under discussion in 2017 fit the 
data very well [3]. Something was apparently missing from 
both models—but what? Our latest paper [4] provides an 
answer to that question.

There were suggestions in the literature about what 
might be missing. We had already included gene flow from 
Neanderthals into modern Europeans [α, 8]. In addition, 
there was evidence for gene flow from early moderns into 
Neanderthals [γ, 14], and into Denisovans from a mysteri-
ous “superarchaic” population, which had separated from 
other hominins early in the Pleistocene [β, 7, 14, 15, 16, 
17]. Adding these episodes of admixture improved things, 
but the fit was still not satisfactory.

The archaeology of the early middle Pleistocene pro-
vided an additional clue. At this time, the “neandersovan” 
ancestors of Neanderthals and Denisovans separated from 
the ancestors of modern humans. Modern humans seem 
to have evolved in Africa, so it seemed plausible that 
neandersovans separated from an African population and 
emigrated to Eurasia. Had they done so, they would have 
encountered the previous “superarchaic” inhabitants of 
Eurasia, who had been there since about 1.85 million years 
ago [18]. This suggested a fourth episode of admixture, 
labeled δ in Fig. 1, from superarchaics into neandersovans.

We studied eight models, all of which included episode 
α, and including all combinations of the other three epi-
sodes of admixture. We labeled models by concatenating 
greek letters to indicate which episodes of admixture were 
included. In evaluating these models, we used an expanded 
data set that includes the high-coverage Vindija Neander-
thal genome [7]. In the site pattern labels in Fig. 3, the letter 

Figure 2: Observed site pattern frequencies. Horizontal axis shows 
the relative frequency of each site pattern in random samples consisting 
of a single haploid genome from each of X, Y , A, and D, representing 
Africa, Europe, Altai Neanderthal, Denisovan. Horizontal lines (which 
look like dots) are 95% confidence intervals estimated by a moving 
blocks bootstrap [10]. Data: Simons Genome Diversity Project [12] and 
Max Planck Institute for Evolutionary Anthropology [18].

Figure 3: Residuals from models α and αβγδ. Key: red asterisks, real 
data; blue circles, 50 bootstrap replicates.
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“v” refers to this genome. Fig. 3 shows the residual errors 
from the simplest and the most complex models. Note that 
for model α several of the residuals are large compared with 
their uncertainties, as indicated by the scatter of blue cir-
cles. This shows that model α fits relatively poorly. Model 
αβγδ, on the other hand, provides a much better fit.

Table 1 shows the bepe values and booma weights of the 
various models. Only two models have positive weights. To 
understand what this means, recall that bootstrap replicates 
approximate repeated sampling from the process that gen-
erated the data. The models with zero weight lose in all rep-
licates, implying that their disadvantage is large compared 
with variation in repeated sampling. We therefore restrict 
attention to the two models with nonzero booma weights.

Fig. 4 shows model-averaged parameter estimates. 
Parameter mδ measures the fraction of neandersovan DNA 
derived from admixture with superarchaics. It has a wide 
confidence interval, but even the lower bound implies sub-
stantial admixture. Parameter TXYNDS is the time at which 
superarchaic populations separated from other hominins. 
Our estimate—over two million years ago—may be 
inflated, because it assumes that the age of male puberty 
has been constant over the past two million years. If the 
average value of this parameter were halfway between the 
values of modern humans and chimpanzees, our estimate of 
TXYNDS would drop to about 1.9 million years ago—roughly 
coincident with the earliest dates of Homo erectus and of 
the earliest expansion of hominins out of Africa [18].

The effective size of the superarchaic population 
(parameter NS) is surprisingly large: even the lower bound 
is 20,000. This does not necessarily mean that there were 
large numbers of superarchaic humans, because effective 
size can be inflated by geographic population structure 
[19]. Our large estimate may mean that neandersovans and 
Denisovans received gene flow from two different superar-
chaic populations.

According to our estimates, the Neanderthal and Den-
isovan populations separated early in the Middle Pleisto-
cene (TND = 737 thousand years), and their neandersovan 

ancestors had a very small population. This is consistent 
with our previous estimates [3]. Our new results, however, 
contradict our previous findings about Neanderthal popu-
lation size. In 2017, we argued that the Neanderthal popu-
lation was larger than others had estimated. However, we 
now estimate that the Neanderthal population was initially 
large (parameter NN0) but then declined in size (parame-
ter NN1) [4]. The difference does not result from our new 
and more elaborate model. It was including the Vindija 
Neanderthal genome that made the difference. Without this 
genome, we still get a large estimate (NN1 ≈ 11,000), even 
using model αβγδ. This implies that the Neanderthals who 
contributed DNA to modern Europeans were more similar 
to the Vindija Neanderthal than to the Altai Neanderthal, as 
others have also shown [7].

These results document the earliest known episode of 
interbreeding between hominin populations. Furthermore, 
these interbreeding populations had been separate far lon-
ger than any pair of hominin populations previously known 
to interbreed. They also confirm our previous finding of 
a bottleneck in population size among the neandersovan 
ancestors of Neanderthals and Denisovans.
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Avoiding Long Queue Wait Times in Slurm 
Clusters
Brett Milash, CHPC Scientific Consultant

“Why isn’t my job running?”, you ask. Often, when you 
submit a job to a Slurm cluster, it sits waiting in the queue 
in the pending (PD) state. Your job is sitting in line, wait-
ing for one or more compute nodes to become available. 
How can you avoid this? That depends upon the compute 
resources available to you, and in some cases how many 
jobs you have submitted. This article will describe some 
tools to help you identify less busy partitions, and strategies 
to target those resources.

First, it is important to know what resources are avail-
able to you. Use the myallocation command to list all 
the account and partition combinations on the various clus-
ters. Here is the output when I run myallocation:

You can see I have access to several clusters (lonepeak, 
kingspeak, notchpeak, and ash), and my access is either 
“general” (non-preemptable) on the regular or shared par-

titions on those clusters, or “preemptable” on the guest 
partitions. If I want to submit a job to one of the general 
partitions, I can check the number of pending jobs on each 
cluster:

We can see there are 481 pending jobs on kingspeak, but 
only a few jobs pending on the other clusters. Note that I 
can query the queue on any cluster using the -M clus-
tername option—there is no need to log in to an inter-
active node on a different cluster to do this. Also, notice 
that I check both the regular and shared partitions for a 
cluster (e.g., notchpeak and notchpeak-shared). Since both 
of those partitions include the same nodes, it is important 
to consider both of them to accurately gauge how busy that 
cluster is.

To target one of those less-busy clusters I can either 
edit my Slurm script giving it the desired partition, or more 
simply I can specify the cluster name and partition on the 
command line:

Done this way, I can be more agile in how I target compute 
resources, rather than using the same partition all the time.

An alternative to squeue -p is to look at the Cluster 
Utilization graphs on the CHPC home page (www.chpc.
utah.edu), or click through those graphs to get a more 
detailed listing. These graphs show, at a glance, how busy 
the clusters are. An example is shown on the next page. The 
orange bars represent CPU usage at a given time relative to 
the total potential given with the black line. You can see that 
kingspeak is at capacity, while lonepeak and notchpeak are 
less busy. Note that the image was captured during Spring 
Break and is not representative of typical usage.

Another technique for avoiding long wait times in the 
general partitions pertains to smaller jobs that need less 
than an entire node or are expected to end quickly. If you 
need fewer than all the cores in a node, target a shared par-
tition such as notchpeak-shared or kingspeak-shared, spec-
ifying the number of cores needed using -n or --ntasks. 
Your job may start sooner by sharing a node with another 
job. For more information on node sharing see https://
www.chpc.utah.edu/documentation/software/node-shar-
ing.php. If your job will finish quickly, provide an estimate 
of your job’s run time to Slurm. For example, #SBATCH 
--time=01:00:00 requests resources for one hour.

http://www.chpc.utah.edu
http://www.chpc.utah.edu
https://www.chpc.utah.edu/documentation/software/node-sharing.php
https://www.chpc.utah.edu/documentation/software/node-sharing.php
https://www.chpc.utah.edu/documentation/software/node-sharing.php
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The Slurm scheduler can frequently backfill gaps in the 
cluster schedule with small jobs like these. Make sure, 
however, to overestimate the run time, since jobs will be 
terminated when the requested wall time has elapsed.

Yet another strategy is to run jobs in guest mode. This 
type of access is available to you even if you have access to 
your own owner nodes or have an allocation on the general 
nodes. Your jobs in guest mode are preemptable. However, 
you can target nodes owned by groups with low utilization 
by following the instructions on this page: https://www.
chpc.utah.edu/usage/constraints/.

Sometimes there is no alternative to waiting in the 
queue. In some cases, Slurm can provide the estimated start 
time of your job while it waits in the pending state. Given 
the job ID, you can get this information with scontrol:

Here we can see a job StartTime for a job that is still in the 
PENDING state—this is an estimated start time, based on 
the number of jobs in the queue, the number of available 
nodes, the estimated run-time of queued jobs, and so on.

The lengths of the queues on the CHPC clusters are 
very dynamic, with ever-changing numbers of jobs and 
wait times. By using these strategies to find and target less-
busy resources, you may find you can cut your jobs’ wait 
times significantly.

Updates to XDMoD
Anita Orendt, Assistant Director for Research Consulting

CHPC has been using the open source tool, Open 
XDMoD—XSEDE Metrics on Demand—to track usage of 
the HPC clusters for several years. This tool was originally 
developed to provide a wide range of usage metrics on the 
XSEDE resources and was subsequently made available 
to track usage on any HPC environment. CHPC has two 
XDMoD instances:
•	 xdmod.chpc.utah.edu, which tracks usage of the com-

pute nodes of the general environment clusters
•	 pe-xdmod.chpc.utah.edu, which tracks the usage of the 

compute nodes of the redwood cluster in the protected 
environment

The page you land on when you go to either of these sites 
provides an overview of the usage of the clusters via a few 
different metrics, including Total CPU Hours (these are 
the core hours) and a breakdown of the usage by Slurm 
account. While these are useful metrics, they do not pro-
vide the level of detail that an individual user would be 
interested in. From the “Usage” tab, one can do queries at 
the resource, queue, user or Slurm account level; however, 
you would need to repeat these queries each time you want 
an update. We show an example of how to do this at a group 
level on our XDMoD page, https://www.chpc.utah.edu/
documentation/software/xdmod.php.

We have recently updated our XDMoD installation, 
adding several features which we believe increase the value 
of these XDMoD instances to our HPC user base; two of 
these features are highlighted in this article.

Customized Dashboard
We have enabled login to the two CHPC XDMoD instances, 
which allows you to access a more personalized dashboard 
that you can customize. The first step is to sign in using 
your university login credentials. By default, your role is 
that of a user, which gives you the current standard user 
dashboard, which includes a list of your recent jobs (last 
month), a chart of the usage of these jobs (both number 
of jobs and core hours used), the wait time of each queue, 
and a job efficiency meter, as shown in the image on the 
following page.

By default, the time period is the last 30 days. If you 
move the cursor over the different sections, you will see 
additional information. Note that there is a different metric 
used in the CPU efficiency in the job listing—a scale of 
red, orange, yellow, green, or N/A—whereas in the “Job 
Efficiency” report, jobs are marked “inefficient”/red if they 
have less than 10% User CPU usage and they are using less 
than 50% of available memory. Also note the way hyper-

https://www.chpc.utah.edu/usage/constraints/
https://www.chpc.utah.edu/usage/constraints/
xdmod.chpc.utah.edu
pe-xdmod.chpc.utah.edu
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://www.chpc.utah.edu/documentation/software/xdmod.php
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threading is treated in XDMoD: an efficiency of 50% is all 
cores assigned to the job being used.

If you go to your profile, you will see your current 
role. As mentioned above, the default role assignment is 
user. There is, however, a PI role that will show not only 
your own usage, but the usage of all users of your Slurm 
account. In order to be given access to this, you can send a 
request to helpdesk@chpc.utah.edu. Note that CHPC will 
require anyone given this role to be a CHPC PI or have the 
PI’s permission.

If an existing chart in the Dashboard view has the “Edit 
in Metric Explorer” icon in the title bar you can use this 
icon to change or customize the chart. Alternately, you can 
add additional charts to your personal dashboard by select-
ing the “Metric Explorer” tab. On the CHPC XDMoD 
page, https://www.chpc.utah.edu/documentation/software/
xdmod.php, we give examples of both. The XDMoD User 
Manual, https://xdmod.ccr.buffalo.edu/user_manual/, pro-
vides additional, detailed information about the options.

Addition of the SUPReMM Module
The SUPReMM (Systems Usage and Performance of 
Resources Monitoring and Modeling) module is also 
referred to as the Job Performance Module. The informa-
tion about a job is pulled from Slurm and the Performance 
Co-Pilot (PCP) monitoring running on all compute nodes. 
We have the Slurm data for jobs back to when we started 
using Slurm and the PCP data since June 2019.

There are two main ways to access this information 
about a given job. The first is to select the job from the jobs 
listing on the personalized dashboard mentioned above; 
this will pull the job information and open the “Job Viewer” 
tab. The second way is to select the “Job Viewer” tab, and 
use the search tab to choose the job or jobs you want to 
analyze, either via the quick lookup if you have the cluster 
and job number, or via the advanced search which will give 
you a list of jobs. Note that in the advanced search you can 
choose any date range; when you choose the filter, it will 
populate a pull-down of options available in the “Select a 

Value” field. Once this is populated, click the “Add” button, 
and then the “Search” button near the bottom. If there are 
any jobs that match the selected criteria, they will appear 
in the “Results” window. From the jobs that appear, you 
can select one or more by checking them in the “Include” 
column, then “Save Results” at the bottom. This is shown 
in the image below.

When you do either of these, you will see the selected job(s) 
in the “Job Viewer” tab, as shown in the image below.

In the “Job Viewer” window, there are four tabs:
•	 Accounting data: information about the job, such as its 

run time and the executable used
•	 Executable information: includes the node(s) and the 

cores assigned to the job
•	 Summary metrics: information about CPU, memory, file 

and network I/O, and energy usage
•	 Detailed metrics: increased granularity of data in Sum-

mary metrics tab
There is also the option to get plots of timeseries data on a 
number of the metrics over the course of the job by opening 
the Timeseries folder found on the left hand side of this 
window.

If you would like assistance in interpreting this data for 
any of your jobs, refer to the XDMoD user manual or reach 
out to CHPC via helpdesk@chpc.utah.edu.

mailto:helpdesk%40chpc.utah.edu?subject=
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://xdmod.ccr.buffalo.edu/user_manual/
mailto:helpdesk%40chpc.utah.edu?subject=
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The History and Growth of CHPC
Tom Cheatham, Director of CHPC, and Anita Orendt, Assistant Direc-
tor for Research Consulting

The University of Utah has a long history in computing 
excellence with the formation of its computer science 
department in 1965 and its early role in the internet as the 
4th node on the Arpanet in 1969.

The Utah Supercomputing Institute (USI) was formed 
in 1989 with a donation of an IBM 3090 worth about $22M 
at a time when the total higher education budget in Utah 
was about $28M. The Scientific Computing and Imaging 
Institute (SCI) formed in 1994. USI transitioned into the 
Center for High Performance Computing (CHPC) in 1995 
based on the Detar report that added IT research and devel-
opment, distributed computing, security, and advanced 
networking, and expanded the mission to enhance compu-
tational science research at the university.

CHPC’s first and relatively early deployment of a pro-
tected environment (PE) for compute and restricted data 
occurred in 2009. CHPC and the University of Utah also 
deployed one of the first Science DMZs in 2011. In 2014, 
CHPC shifted focus to being a service provider rather than 
a research institute, breaking down previous barriers to col-
laborations with centers and institutes who felt that CHPC 
was competing instead of providing. Grant efforts in CHPC 
are now focused on “things that will broadly help campus,” 
such as CC* and equipment awards. In 2017, CHPC was 
awarded an NIH S10 to replace and upgrade the PE.

Year after year, growth of CHPC resource and usage 
has been astounding. Diversity of usage along with the 
number of disciplines is rising; we definitely are no longer 
simply an HPC center. We continue to have rapid growth 
in the HPC usage by several different measurements. The 
increase in core hours used in 2019 was 10.6% relative 
to 2018. Note that this usage does not include non-HPC 
usage—Windows server, specialized compute instruments 
(pets), or the usage of virtual machines (VMs)—for com-
putational purposes.

We also continue to see growth in CHPC account 
requests, allocation requests, and groups purchasing their 
own nodes.

Finally, we have seen rapid growth in both the num-
ber of training sessions we offer as part of our CHPC 
Presentation Series and the number of attendees. Over the 
last several years, CHPC has moved to do more hands-on 
training, added training during the summer semester, and 
enabled remote participation. During 2019, excluding the 
XSEDE-run workshops and the Build a Cluster workshop, 
there were over 50 presentations, encompassing 80 hours 
and attended by over 900 users.

Updates on Recent and Upcoming Changes
In CHPC’s Fall 2019 Newsletter, we outlined a number of 
upcoming changes. Several were completed in the last few 
months. The major changes completed were the addition 
of 32 new AMD nodes to notchpeak, the retirement of 
ember, and the move to make notchpeak the only cluster 
that requires allocation to run on the general nodes without 
jobs being subject to preemption. In addition, lonepeak was 
expanded with donated hardware, including four additional 
donated nodes with 1 TB of memory each.

There are still two upcoming changes. The first of the 
two upcoming changes involves providing priority access 
to the lonepeak general nodes for “cancer-related research.” 
CHPC will implement this change effective April 1, 2020.

The second upcoming change is related to the previ-
ously announced changes to local scratch. Now that the ini-
tial step of software encryption of the local hard drives on 
compute and interactive nodes has been completed, several 
changes will be implemented in the coming months:
•	 The permissions of the top-level /scratch/local will be 

set such that users cannot create directories in the space
•	 The job prolog (before the job starts) will make a job-

level directory /scratch/local/$USER/$SLURM_JOB_
ID, to which only the user will have access

•	 The job epilog will the remove this job-level directory 
after the job has ended, regardless of the exit state

We will make this change on a per-cluster basis to allow 
users time to adapt their scripts to write to /scratch/
local/$USER/$SLURM_JOB_ID instead of creating a job-
level directory under /scratch/local.

https://www.ncbi.nlm.nih.gov/pubmed/23911553
https://www.ncbi.nlm.nih.gov/pubmed/23911553


Thank you for using CHPC resources!

Welcome to CHPC News!
If you would like to be added to our mailing list, please 
provide the following information via the contact methods 
described below.

Name:
Phone:
Email:

Department
or Affiliation:

Address:
(campus
or U.S. mail)

Please acknowledge the use of CHPC resources!
If you use CHPC computer time or staff resources, we 
request that you acknowledge this in technical reports, 
publications, and dissertations. An example of what 
we ask you to include in your acknowledgments is: 

“A grant of computer time from the Center for High 
Performance Computing is gratefully acknowledged.” 

If you make use of the CHPC Protected Environment, please 
also acknowledge the NIH shared instrumentation grant: 

“The computational resources used were partially 
funded by the NIH Shared Instrumentation Grant 
1S10OD021644-01A1.”

Electronic responses
By email:	 helpdesk@chpc.utah.edu
By fax:		 (801) 585–5366

Paper responses
By U.S. mail:		  155 South 1452 East, Rm 405
			   Salt Lake City, UT 84112–0190
By campus mail:	 INSCC 405

Please submit copies or citations of dissertations, reports, pre-prints, and reprints in 
which CHPC is acknowledged in one of the following ways:

The University of Utah 
University Information Technology 
Center for High Performance Computing 
155 South 1452 East, Room 405 
SALT LAKE CITY, UT 84112–0190

mailto:helpdesk%40chpc.utah.edu?subject=Response%20to%20newsletter

