
Our lab has developed a new statistical method, called
“Legofit,” which uses genetic data to estimate the his-

tory of population size, subdivision, and gene flow [1]. Our
recent publications have used it to study human evolution
over the past 2 million years [2, 3, 4].

Legofit studies the frequencies of “nucleotide site pat-
terns,” which are illustrated in Fig. 1. The solid black lines
and arrows represent a network of populations. The dashed
and colored lines show one of many possible gene geneal-
ogies that might occur at different nucleotide sites within
the genome. Upper-case letters refer to populations. X rep-
resents an African population (the Yorubans), Y a European
population, A Altai Neanderthals, and D Denisovans. S is
an unsampled “superarchaic” population that is distantly
related to other humans. Lowercase letters at the bottom of
Fig. 1 label nucleotide site patterns. A nucleotide site exhib-
its pattern xya if random nucleotides sampled from X, Y,
and A carry the derived allele, but those sampled from other
populations are ancestral. Site pattern probabilities can be
calculated from models of population history, and their
frequencies can be estimated from data. Legofit estimates
parameters by fitting models to these relative frequencies.

Nucleotide site patterns contain only a portion of the
information available in genome sequence data. This por-
tion, however, is of particular relevance to the study of deep
population history. Site pattern frequencies are unaffected
by recent population history because they ignore the with-
in-population component of variation [1]. This reduces the
number of parameters we must estimate and allows us to
focus on the distant past.

Figure 2 shows a set of site pattern frequencies. The
largest effects in these data are the least interesting: single-
ton site patterns (x, y, a, and d) are common because each
of the populations has a long history of independent evolu-

tion, xy is common because Africans (X) and Europeans (Y)
are both populations of modern humans and therefore share
ancestors; ad is common for the same reason.

The interesting effects are more subtle. Notice that ya is
more common than xa, xd, or yd. This is because Europe-
ans have some Neanderthal ancestors [8]. Notice also that
d is more common than the other singleton site patterns and
that xya is more common than the other tripletons. This is
the signature of superarchaic admixture into Denisovans,
as explained in Fig. 1: mutations on the red branch inflate
the frequency of d and those on the blue branch inflate xya.

In fitting models to site pattern frequencies, we use a
numerical algorithm—differential evolution [DE, 9]—to
maximize a composite likelihood function. DE maintains a
swarm of points, each representing a set of parameter val-

The Deep History of Human Populations
Research Highlight · Alan R. Rogers, Departments of Anthropology and Biology

Newsletter

Spring 2020
The Deep History of Human Populations
Avoiding Long Queue Wait Times in Slurm Clusters
Updates to XDMoD
The History and Growth of CHPC
Updates on Recent and Upcoming Changes

Figure 1: A population network including four episodes of gene
flow, with an embedded gene genealogy. Uppercase letters (X, Y,
A, D, and S) represent populations (Africa, Europe, Altai Neanderthal,
Denisovan, and superarchaic). Greek letters label episodes of admixture.
d and xya illustrate two nucleotide site patterns, in which 0 and 1 repre-
sent ancestral and derived alleles. A mutation on the red branch would
generate site pattern d. One on the blue branch would generate xya.

2 Spring 2020

ues. The number of points is 10 times the number of free
parameters. In recent work, our models involve nearly 20
parameters, so there are nearly 200 points in the swarm. In
each DE iteration, the composite likelihood of each point is
estimated by computer simulation. These simulations run
in separate threads of execution on a single CHPC node.

To estimate uncertainty, we use a moving blocks boot-
strap [5], which resamples blocks of nucleotides. Each
bootstrap replicate runs on a separate CHPC node, admin-
istered by a Slurm array. By parallelizing both across nodes
and across threads within nodes, we can potentially accel-
erate these calculations by about 2,000-fold, depending on
the availability of nodes and the number of cores per node.

To choose among models, we use the bootstrap esti-
mate of predictive error [bepe, 10, 11]. Bepe is analogous
to cross-validation, but uses bootstrap replicates instead of
partitions of the data. We also use bootstrap model averag-
ing [booma, 12], which assigns weights to each model based
on the fraction of replicates (including the real data and 50
bootstrap replicates) in which that model “wins”—that is,
has the lowest value of bepe. Booma deals with problems
of statistical identifiability by broadening confidence inter-
vals to include uncertainty about the model itself.

We first used Legofit in 2017 to argue that Neander-
thals and Denisovans separated early, that their neanderso-
van ancestors endured a bottleneck of population size, and
that the post-separation Neanderthal population was large
[2]. That analysis omitted “singleton” site patterns—those
in which the derived (or mutant) allele is present only in
the sample from one population. Mafessoni and Prüfer
[13] pointed out that introducing singletons led to differ-
ent results. In response Rogers et al. [3] agreed, but also

observed that the with-singleton analysis implied that the
Denisovan fossil was only 4,000 years old—a result that
is plainly wrong. Furthermore, a residual analysis showed
that neither of the models under discussion in 2017 fit the
data very well [3]. Something was apparently missing from
both models—but what? Our latest paper [4] provides an
answer to that question.

There were suggestions in the literature about what
might be missing. We had already included gene flow from
Neanderthals into modern Europeans [α, 8]. In addition,
there was evidence for gene flow from early moderns into
Neanderthals [γ, 14], and into Denisovans from a mysteri-
ous “superarchaic” population, which had separated from
other hominins early in the Pleistocene [β, 7, 14, 15, 16,
17]. Adding these episodes of admixture improved things,
but the fit was still not satisfactory.

The archaeology of the early middle Pleistocene pro-
vided an additional clue. At this time, the “neandersovan”
ancestors of Neanderthals and Denisovans separated from
the ancestors of modern humans. Modern humans seem
to have evolved in Africa, so it seemed plausible that
neandersovans separated from an African population and
emigrated to Eurasia. Had they done so, they would have
encountered the previous “superarchaic” inhabitants of
Eurasia, who had been there since about 1.85 million years
ago [18]. This suggested a fourth episode of admixture,
labeled δ in Fig. 1, from superarchaics into neandersovans.

We studied eight models, all of which included episode
α, and including all combinations of the other three epi-
sodes of admixture. We labeled models by concatenating
greek letters to indicate which episodes of admixture were
included. In evaluating these models, we used an expanded
data set that includes the high-coverage Vindija Neander-
thal genome [7]. In the site pattern labels in Fig. 3, the letter

Figure 2: Observed site pattern frequencies. Horizontal axis shows
the relative frequency of each site pattern in random samples consisting
of a single haploid genome from each of X, Y , A, and D, representing
Africa, Europe, Altai Neanderthal, Denisovan. Horizontal lines (which
look like dots) are 95% confidence intervals estimated by a moving
blocks bootstrap [10]. Data: Simons Genome Diversity Project [12] and
Max Planck Institute for Evolutionary Anthropology [18].

Figure 3: Residuals from models α and αβγδ. Key: red asterisks, real
data; blue circles, 50 bootstrap replicates.

3Center for High Performance Computing

“v” refers to this genome. Fig. 3 shows the residual errors
from the simplest and the most complex models. Note that
for model α several of the residuals are large compared with
their uncertainties, as indicated by the scatter of blue cir-
cles. This shows that model α fits relatively poorly. Model
αβγδ, on the other hand, provides a much better fit.

Table 1 shows the bepe values and booma weights of the
various models. Only two models have positive weights. To
understand what this means, recall that bootstrap replicates
approximate repeated sampling from the process that gen-
erated the data. The models with zero weight lose in all rep-
licates, implying that their disadvantage is large compared
with variation in repeated sampling. We therefore restrict
attention to the two models with nonzero booma weights.

Fig. 4 shows model-averaged parameter estimates.
Parameter mδ measures the fraction of neandersovan DNA
derived from admixture with superarchaics. It has a wide
confidence interval, but even the lower bound implies sub-
stantial admixture. Parameter TXYNDS is the time at which
superarchaic populations separated from other hominins.
Our estimate—over two million years ago—may be
inflated, because it assumes that the age of male puberty
has been constant over the past two million years. If the
average value of this parameter were halfway between the
values of modern humans and chimpanzees, our estimate of
TXYNDS would drop to about 1.9 million years ago—roughly
coincident with the earliest dates of Homo erectus and of
the earliest expansion of hominins out of Africa [18].

The effective size of the superarchaic population
(parameter NS) is surprisingly large: even the lower bound
is 20,000. This does not necessarily mean that there were
large numbers of superarchaic humans, because effective
size can be inflated by geographic population structure
[19]. Our large estimate may mean that neandersovans and
Denisovans received gene flow from two different superar-
chaic populations.

According to our estimates, the Neanderthal and Den-
isovan populations separated early in the Middle Pleisto-
cene (TND = 737 thousand years), and their neandersovan

ancestors had a very small population. This is consistent
with our previous estimates [3]. Our new results, however,
contradict our previous findings about Neanderthal popu-
lation size. In 2017, we argued that the Neanderthal popu-
lation was larger than others had estimated. However, we
now estimate that the Neanderthal population was initially
large (parameter NN0) but then declined in size (parame-
ter NN1) [4]. The difference does not result from our new
and more elaborate model. It was including the Vindija
Neanderthal genome that made the difference. Without this
genome, we still get a large estimate (NN1 ≈ 11,000), even
using model αβγδ. This implies that the Neanderthals who
contributed DNA to modern Europeans were more similar
to the Vindija Neanderthal than to the Altai Neanderthal, as
others have also shown [7].

These results document the earliest known episode of
interbreeding between hominin populations. Furthermore,
these interbreeding populations had been separate far lon-
ger than any pair of hominin populations previously known
to interbreed. They also confirm our previous finding of
a bottleneck in population size among the neandersovan
ancestors of Neanderthals and Denisovans.

References

Table 1: Bootstrap estimate of predictive error (bepe) values and boot-
strap model average (booma) weights.

Figure 4: Model-averaged parameter estimates with 95% confi-
dence intervals estimated by moving-blocks bootstrap [10]. Key:
mα, fraction of Y introgressed from N; mβ, fraction of D introgressed from
Neanderthals; mγ, fraction of Neanderthal DNA introgressed from XY;
mδ, fraction of neandersovan DNA introgressed from S; TXYNDS, superar-
chaic separation time; TXY , separation time of X and Y; TND, separation
time of Neanderthals and Denisovans; TN0, end of early epoch of Nean-
derthal history; TA, age of Altai Neanderthal fossil; TV, age of Vindija
Neanderthal fossil; TD, age of Denisovan fossil; NS, size of superarchaic
population; NXYND, size of populations XYND and XYNDS; NXY, size of
population XY; NND, size of population ND; NN0, size of early Neanderthal
population; NN1, size of late Neanderthal population. Parameters that
exist in only one model are not averaged.

4 Spring 2020

[1] Rogers, A. R. (2019). Legofit: Estimating population history from genetic data. BMC Bioinformatics 20, 526.

[2] Rogers, A. R., Bohlender, R. J., and Huff, C. D. (2017). Early history of Neanderthals and Denisovans. Proceedings
of the National Academy of Sciences, USA 114, 9859–9863.

[3] Rogers, A. R., Bohlender, R. J., and Huff, C. D. (2017). Reply to Mafessoni and Prüfer: Inferences with and without
singleton site patterns. Proceedings of the National Academy of Sciences, USA 114, E10258–E10260.

[4] Rogers, A. R., Harris, N. S., and Achenbach, A. A. (2020). Neanderthal-Denisovan ancestors interbred with a
distantly-related hominin. Science Advances 6.

[5] Liu, R. Y. and Singh, K. (1992). Moving blocks jacknife and bootstrap capture weak dependence. In LePage, R. and
Billard, L., eds., Exploring the “Limits” of the Bootstrap In LePage, R. and Billard, L., eds., Exploring the “Limits”
of the Bootstrap. (New York: Wiley).

[6] Mallick, S. et al. (2016). The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.
Nature 538, 201–206.

[7] Prüfer, K. et al. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658.

[8] Green, R. E. et al. (2010). A draft sequence of the Neandertal genome. Science 328, 710–722.

[9] Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differential Evolution: A Practical Approach to Global Opti-
mization. (Berlin: Springer Science and Business Media).

[10] Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on crossvalidation. Journal of the
American Statistical Association 78, 316–331.

[11] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. (New York: Chapman and Hall).

[12] Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). Model selection: an integral part of inference.
Biometrics 53, 603–618.

[13] Mafessoni, F. and Prüfer, K. (2017). Better support for a small effective size of Neandertals and a long shared
history of Neandertals and Denisovans. Proceedings of the National Academy of Sciences, USA 114, E10256–
E10257.

[14] Kuhlwilm, M. et al. (2016). Ancient gene flow from early modern humans into Eastern Neanderthals. Nature
530, 429–433.

[15] Waddell, P. J., Ramos, J., and Tan, X. (2011). Homo denisova, correspondence spectral analysis, finite sites
reticulate hierarchical coalescent models and the Ron Jeremy hypothesis. ArXiv 1112.6424.

[16] Waddell, P. J. (2013). Happy New Year Homo erectus? More Evidence for Interbreeding with Archaics Predating
the Modern Human/Neanderthal Split. ArXiv 1312.7749.

[17] Prüfer, K. ``et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature
505, 43–49.

[18] Ferring, R., Oms, O., Agustí, J., Berna, F., Nioradze, M., Shelia, T., Tappen, M., Vekua, A., Zhvania, D., and
Lordkipanidze, D. (2011). Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma.
Proceedings of the National Academy of Sciences, USA 108, 10432–10436.

[19] Nei, M. and Takahata, N. (1993). Effective population size, genetic diversity, and coalescence time in subdivided
populations. Journal of Molecular Evolution 37, 240–244.

Avoiding Long Queue Wait Times in Slurm
Clusters
Brett Milash, CHPC Scientific Consultant

“Why isn’t my job running?”, you ask. Often, when you
submit a job to a Slurm cluster, it sits waiting in the queue
in the pending (PD) state. Your job is sitting in line, wait-
ing for one or more compute nodes to become available.
How can you avoid this? That depends upon the compute
resources available to you, and in some cases how many
jobs you have submitted. This article will describe some
tools to help you identify less busy partitions, and strategies
to target those resources.

First, it is important to know what resources are avail-
able to you. Use the myallocation command to list all
the account and partition combinations on the various clus-
ters. Here is the output when I run myallocation:

You can see I have access to several clusters (lonepeak,
kingspeak, notchpeak, and ash), and my access is either
“general” (non-preemptable) on the regular or shared par-

titions on those clusters, or “preemptable” on the guest
partitions. If I want to submit a job to one of the general
partitions, I can check the number of pending jobs on each
cluster:

We can see there are 481 pending jobs on kingspeak, but
only a few jobs pending on the other clusters. Note that I
can query the queue on any cluster using the -M clus-
tername option—there is no need to log in to an inter-
active node on a different cluster to do this. Also, notice
that I check both the regular and shared partitions for a
cluster (e.g., notchpeak and notchpeak-shared). Since both
of those partitions include the same nodes, it is important
to consider both of them to accurately gauge how busy that
cluster is.

To target one of those less-busy clusters I can either
edit my Slurm script giving it the desired partition, or more
simply I can specify the cluster name and partition on the
command line:

Done this way, I can be more agile in how I target compute
resources, rather than using the same partition all the time.

An alternative to squeue -p is to look at the Cluster
Utilization graphs on the CHPC home page (www.chpc.
utah.edu), or click through those graphs to get a more
detailed listing. These graphs show, at a glance, how busy
the clusters are. An example is shown on the next page. The
orange bars represent CPU usage at a given time relative to
the total potential given with the black line. You can see that
kingspeak is at capacity, while lonepeak and notchpeak are
less busy. Note that the image was captured during Spring
Break and is not representative of typical usage.

Another technique for avoiding long wait times in the
general partitions pertains to smaller jobs that need less
than an entire node or are expected to end quickly. If you
need fewer than all the cores in a node, target a shared par-
tition such as notchpeak-shared or kingspeak-shared, spec-
ifying the number of cores needed using -n or --ntasks.
Your job may start sooner by sharing a node with another
job. For more information on node sharing see https://
www.chpc.utah.edu/documentation/software/node-shar-
ing.php. If your job will finish quickly, provide an estimate
of your job’s run time to Slurm. For example, #SBATCH
--time=01:00:00 requests resources for one hour.

http://www.chpc.utah.edu
http://www.chpc.utah.edu
https://www.chpc.utah.edu/documentation/software/node-sharing.php
https://www.chpc.utah.edu/documentation/software/node-sharing.php
https://www.chpc.utah.edu/documentation/software/node-sharing.php

5Center for High Performance Computing

The Slurm scheduler can frequently backfill gaps in the
cluster schedule with small jobs like these. Make sure,
however, to overestimate the run time, since jobs will be
terminated when the requested wall time has elapsed.

Yet another strategy is to run jobs in guest mode. This
type of access is available to you even if you have access to
your own owner nodes or have an allocation on the general
nodes. Your jobs in guest mode are preemptable. However,
you can target nodes owned by groups with low utilization
by following the instructions on this page: https://www.
chpc.utah.edu/usage/constraints/.

Sometimes there is no alternative to waiting in the
queue. In some cases, Slurm can provide the estimated start
time of your job while it waits in the pending state. Given
the job ID, you can get this information with scontrol:

Here we can see a job StartTime for a job that is still in the
PENDING state—this is an estimated start time, based on
the number of jobs in the queue, the number of available
nodes, the estimated run-time of queued jobs, and so on.

The lengths of the queues on the CHPC clusters are
very dynamic, with ever-changing numbers of jobs and
wait times. By using these strategies to find and target less-
busy resources, you may find you can cut your jobs’ wait
times significantly.

Updates to XDMoD
Anita Orendt, Assistant Director for Research Consulting

CHPC has been using the open source tool, Open
XDMoD—XSEDE Metrics on Demand—to track usage of
the HPC clusters for several years. This tool was originally
developed to provide a wide range of usage metrics on the
XSEDE resources and was subsequently made available
to track usage on any HPC environment. CHPC has two
XDMoD instances:
•	 xdmod.chpc.utah.edu, which tracks usage of the com-

pute nodes of the general environment clusters
•	 pe-xdmod.chpc.utah.edu, which tracks the usage of the

compute nodes of the redwood cluster in the protected
environment

The page you land on when you go to either of these sites
provides an overview of the usage of the clusters via a few
different metrics, including Total CPU Hours (these are
the core hours) and a breakdown of the usage by Slurm
account. While these are useful metrics, they do not pro-
vide the level of detail that an individual user would be
interested in. From the “Usage” tab, one can do queries at
the resource, queue, user or Slurm account level; however,
you would need to repeat these queries each time you want
an update. We show an example of how to do this at a group
level on our XDMoD page, https://www.chpc.utah.edu/
documentation/software/xdmod.php.

We have recently updated our XDMoD installation,
adding several features which we believe increase the value
of these XDMoD instances to our HPC user base; two of
these features are highlighted in this article.

Customized Dashboard
We have enabled login to the two CHPC XDMoD instances,
which allows you to access a more personalized dashboard
that you can customize. The first step is to sign in using
your university login credentials. By default, your role is
that of a user, which gives you the current standard user
dashboard, which includes a list of your recent jobs (last
month), a chart of the usage of these jobs (both number
of jobs and core hours used), the wait time of each queue,
and a job efficiency meter, as shown in the image on the
following page.

By default, the time period is the last 30 days. If you
move the cursor over the different sections, you will see
additional information. Note that there is a different metric
used in the CPU efficiency in the job listing—a scale of
red, orange, yellow, green, or N/A—whereas in the “Job
Efficiency” report, jobs are marked “inefficient”/red if they
have less than 10% User CPU usage and they are using less
than 50% of available memory. Also note the way hyper-

https://www.chpc.utah.edu/usage/constraints/
https://www.chpc.utah.edu/usage/constraints/
xdmod.chpc.utah.edu
pe-xdmod.chpc.utah.edu
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://www.chpc.utah.edu/documentation/software/xdmod.php

6 Spring 2020

threading is treated in XDMoD: an efficiency of 50% is all
cores assigned to the job being used.

If you go to your profile, you will see your current
role. As mentioned above, the default role assignment is
user. There is, however, a PI role that will show not only
your own usage, but the usage of all users of your Slurm
account. In order to be given access to this, you can send a
request to helpdesk@chpc.utah.edu. Note that CHPC will
require anyone given this role to be a CHPC PI or have the
PI’s permission.

If an existing chart in the Dashboard view has the “Edit
in Metric Explorer” icon in the title bar you can use this
icon to change or customize the chart. Alternately, you can
add additional charts to your personal dashboard by select-
ing the “Metric Explorer” tab. On the CHPC XDMoD
page, https://www.chpc.utah.edu/documentation/software/
xdmod.php, we give examples of both. The XDMoD User
Manual, https://xdmod.ccr.buffalo.edu/user_manual/, pro-
vides additional, detailed information about the options.

Addition of the SUPReMM Module
The SUPReMM (Systems Usage and Performance of
Resources Monitoring and Modeling) module is also
referred to as the Job Performance Module. The informa-
tion about a job is pulled from Slurm and the Performance
Co-Pilot (PCP) monitoring running on all compute nodes.
We have the Slurm data for jobs back to when we started
using Slurm and the PCP data since June 2019.

There are two main ways to access this information
about a given job. The first is to select the job from the jobs
listing on the personalized dashboard mentioned above;
this will pull the job information and open the “Job Viewer”
tab. The second way is to select the “Job Viewer” tab, and
use the search tab to choose the job or jobs you want to
analyze, either via the quick lookup if you have the cluster
and job number, or via the advanced search which will give
you a list of jobs. Note that in the advanced search you can
choose any date range; when you choose the filter, it will
populate a pull-down of options available in the “Select a

Value” field. Once this is populated, click the “Add” button,
and then the “Search” button near the bottom. If there are
any jobs that match the selected criteria, they will appear
in the “Results” window. From the jobs that appear, you
can select one or more by checking them in the “Include”
column, then “Save Results” at the bottom. This is shown
in the image below.

When you do either of these, you will see the selected job(s)
in the “Job Viewer” tab, as shown in the image below.

In the “Job Viewer” window, there are four tabs:
•	 Accounting data: information about the job, such as its

run time and the executable used
•	 Executable information: includes the node(s) and the

cores assigned to the job
•	 Summary metrics: information about CPU, memory, file

and network I/O, and energy usage
•	 Detailed metrics: increased granularity of data in Sum-

mary metrics tab
There is also the option to get plots of timeseries data on a
number of the metrics over the course of the job by opening
the Timeseries folder found on the left hand side of this
window.

If you would like assistance in interpreting this data for
any of your jobs, refer to the XDMoD user manual or reach
out to CHPC via helpdesk@chpc.utah.edu.

mailto:helpdesk%40chpc.utah.edu?subject=
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://www.chpc.utah.edu/documentation/software/xdmod.php
https://xdmod.ccr.buffalo.edu/user_manual/
mailto:helpdesk%40chpc.utah.edu?subject=

7Center for High Performance Computing

The History and Growth of CHPC
Tom Cheatham, Director of CHPC, and Anita Orendt, Assistant Direc-
tor for Research Consulting

The University of Utah has a long history in computing
excellence with the formation of its computer science
department in 1965 and its early role in the internet as the
4th node on the Arpanet in 1969.

The Utah Supercomputing Institute (USI) was formed
in 1989 with a donation of an IBM 3090 worth about $22M
at a time when the total higher education budget in Utah
was about $28M. The Scientific Computing and Imaging
Institute (SCI) formed in 1994. USI transitioned into the
Center for High Performance Computing (CHPC) in 1995
based on the Detar report that added IT research and devel-
opment, distributed computing, security, and advanced
networking, and expanded the mission to enhance compu-
tational science research at the university.

CHPC’s first and relatively early deployment of a pro-
tected environment (PE) for compute and restricted data
occurred in 2009. CHPC and the University of Utah also
deployed one of the first Science DMZs in 2011. In 2014,
CHPC shifted focus to being a service provider rather than
a research institute, breaking down previous barriers to col-
laborations with centers and institutes who felt that CHPC
was competing instead of providing. Grant efforts in CHPC
are now focused on “things that will broadly help campus,”
such as CC* and equipment awards. In 2017, CHPC was
awarded an NIH S10 to replace and upgrade the PE.

Year after year, growth of CHPC resource and usage
has been astounding. Diversity of usage along with the
number of disciplines is rising; we definitely are no longer
simply an HPC center. We continue to have rapid growth
in the HPC usage by several different measurements. The
increase in core hours used in 2019 was 10.6% relative
to 2018. Note that this usage does not include non-HPC
usage—Windows server, specialized compute instruments
(pets), or the usage of virtual machines (VMs)—for com-
putational purposes.

We also continue to see growth in CHPC account
requests, allocation requests, and groups purchasing their
own nodes.

Finally, we have seen rapid growth in both the num-
ber of training sessions we offer as part of our CHPC
Presentation Series and the number of attendees. Over the
last several years, CHPC has moved to do more hands-on
training, added training during the summer semester, and
enabled remote participation. During 2019, excluding the
XSEDE-run workshops and the Build a Cluster workshop,
there were over 50 presentations, encompassing 80 hours
and attended by over 900 users.

Updates on Recent and Upcoming Changes
In CHPC’s Fall 2019 Newsletter, we outlined a number of
upcoming changes. Several were completed in the last few
months. The major changes completed were the addition
of 32 new AMD nodes to notchpeak, the retirement of
ember, and the move to make notchpeak the only cluster
that requires allocation to run on the general nodes without
jobs being subject to preemption. In addition, lonepeak was
expanded with donated hardware, including four additional
donated nodes with 1 TB of memory each.

There are still two upcoming changes. The first of the
two upcoming changes involves providing priority access
to the lonepeak general nodes for “cancer-related research.”
CHPC will implement this change effective April 1, 2020.

The second upcoming change is related to the previ-
ously announced changes to local scratch. Now that the ini-
tial step of software encryption of the local hard drives on
compute and interactive nodes has been completed, several
changes will be implemented in the coming months:
•	 The permissions of the top-level /scratch/local will be

set such that users cannot create directories in the space
•	 The job prolog (before the job starts) will make a job-

level directory /scratch/local/$USER/$SLURM_JOB_
ID, to which only the user will have access

•	 The job epilog will the remove this job-level directory
after the job has ended, regardless of the exit state

We will make this change on a per-cluster basis to allow
users time to adapt their scripts to write to /scratch/
local/$USER/$SLURM_JOB_ID instead of creating a job-
level directory under /scratch/local.

https://www.ncbi.nlm.nih.gov/pubmed/23911553
https://www.ncbi.nlm.nih.gov/pubmed/23911553

Thank you for using CHPC resources!

Welcome to CHPC News!
If you would like to be added to our mailing list, please
provide the following information via the contact methods
described below.

Name:
Phone:
Email:

Department
or Affiliation:

Address:
(campus
or U.S. mail)

Please acknowledge the use of CHPC resources!
If you use CHPC computer time or staff resources, we
request that you acknowledge this in technical reports,
publications, and dissertations. An example of what
we ask you to include in your acknowledgments is:

“A grant of computer time from the Center for High
Performance Computing is gratefully acknowledged.”

If you make use of the CHPC Protected Environment, please
also acknowledge the NIH shared instrumentation grant:

“The computational resources used were partially
funded by the NIH Shared Instrumentation Grant
1S10OD021644-01A1.”

Electronic responses
By email:	 helpdesk@chpc.utah.edu
By fax:		 (801) 585–5366

Paper responses
By U.S. mail:		 155 South 1452 East, Rm 405
			 Salt Lake City, UT 84112–0190
By campus mail:	 INSCC 405

Please submit copies or citations of dissertations, reports, pre-prints, and reprints in
which CHPC is acknowledged in one of the following ways:

The University of Utah
University Information Technology
Center for High Performance Computing
155 South 1452 East, Room 405
SALT LAKE CITY, UT 84112–0190

mailto:helpdesk%40chpc.utah.edu?subject=Response%20to%20newsletter

