
1

Git reference
Written by Robben Migacz · Updated September 2024

Git is version control software, which means that it keeps track of changes to files and helps its users manage versions. Git

can be a bit difficult to navigate as a new user; to help with this, we’ve put together a reference for some common commands.

In this reference, we’ve made a few simplifications and left out a number of commands and options. Please consult the Git

documentation (available online at https://git-scm.com/docs) for more information about each concept or command if

you’d like to learn more.

Contents
Conventions in this reference 1

Getting help 2

Inspecting objects 2

Initializing a repository 2

Configuring Git 2
Global configuration 2
Local configuration 3
Viewing the configuration 3

Viewing the status of a repository 3

Working with the staging area 3
Adding files . 3
Removing files . 3

Comparing files 4

Committing changes 4

Viewing the project history 5

Managing tags 5

Working with branches 5

Working with the stash 6

Working with remotes 6

Reverting and resetting 7
Reverting . 7
Resetting . 7

Rebasing 8

Moving to a different project state 8

Conventions in this reference

Commands are shown in bold, blue-green text. Segments

of text in italics are values you will want to change based

on your own project or situation. Select commands have

annotations that show how they affect projects, like

,

which represents updating the staging area based on the

contents of the working directory (see diagram below). An-

notations are not present on all commands; please consult

the Git documentation if you are not sure how a command

will affect your project.

Working
directory

Staging
area Commits

Stash Remote
repository

https://git-scm.com/docs

2

Getting help

Git comes with documentation and several tutorials in case

you need an explanation of a command, a list of options, or

an example.

git help commit

man git-commit

Get information about the command git commit (as an

example; also applies to other commands)

Read documentation

git help tutorial

git help everyday

git help workflows

git help glossary

View tutorials created by the maintainers of Git

Read documentation

Inspecting objects

Git provides a tool to help you find more information about

objects like commits and tags.

git show object-identifier

Get further details about object-identifier, which may be

an identifier like a commit, a branch name, or a tag

Read documentation

Initializing a repository

You can obtain a Git repository by initializing one in a direc-

tory or cloning an existing project.

git init

Initialize a new Git repository in the current directory

Read documentation

git clone remote-location

Copy a repository from remote-location into a new direc-

tory within the current directory

Read documentation

git clone remote-location directory-name

As above, with directory-name as the name of the new

directory

Read documentation

git clone --origin origin-name remote-location directory-

name

As above, with origin-name as the name of the remote

repository (used for git push and git pull)

Read documentation

Configuring Git

There aremanyoptions that affect thebehavior ofGit. These

can be set with commands or by modifying configuration

files. You can set defaults andmake adjustments for specific

repositories.

Information like your name and email address is added

to commits; sharing your repository with another person

will expose this information. Changing the configuration

does not affect prior commits.

Global configuration

The global configuration is the default; it is used when there

are no repository-specific configurations.

git config --global user.name "Your Name"

Set the user’s default name for commits

Read documentation

git config --global user.email "your.name@your.domain"

Set the user’s default email for commits

Read documentation

git config --global --edit

Edit the global (default) configuration in a text editor (see

below for notes on editor selection)

Read documentation

https://git-scm.com/docs/git-help
https://git-scm.com/docs/git-help
https://git-scm.com/docs/git-show
https://git-scm.com/docs/git-init
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-config

3

git config --global core.editor "nano"

Set the default text editor to nano (as an example; also ap-

plies to other editors); alternatively, set an environment

variable, as in (export GIT_EDITOR="nano"; git config

--global edit)

Read documentation

Local configuration

The local configuration applies to a specific repository and

overrides the global configuration.

git config user.name "Your Name"

Set the user’s name for commits in the current repository;

other options can also be changed locally but are omitted

here

Read documentation

git config edit

Edit the configuration for the current repository in a text

editor

Read documentation

Viewing the configuration

Git provides a tool that shows the current configuration (in-

cluding repository-specific configurations where applicable

and global configurations otherwise).

git config list

List current configurations (global and local)

Read documentation

Viewing the status of a repository

Git provides a tool that allows you to see the status of the

working directory and staging area.

git status

Show the status of the project, including a list of files with

modifications since the last commit and files currently

staged

Read documentation

Working with the staging area

Before you can make a commit, you must add your changes

to the staging area.

Adding files

Changes that are added to the staging area are included in

commits.

git add example-filename

Add example-filename, which may be a pattern like . or

*.py, to the staging area

Read documentation

git add --all

Match the staging area to the working directory; will

add files—including new files (compare to git commit

--all)—or remove where appropriate

Read documentation

git add --dry-run files-to-add

See the effect that git add files-to-addwould have, but

don’t actually add any files

Read documentation

Removing files

You can also remove files from the staging area if you decide

you don’t want to commit certain changes.

Please read the documentation on git rm before using

it. The command can remove files, which is permanent.

https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-config
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add

4

git rm --cached files-to-remove-from-index

Remove files-to-remove-from-index, whichmay be a pat-

tern like . or *.py, from the staging area; don’t delete the

files from the filesystem

Read documentation

git rm --dry-run files-to-remove

See the effect git rm files-to-remove would have, but

don’t actually rm any files

Read documentation

git rm file-to-remove

Remove the file file-to-remove from the repository and

the filesystem

Read documentation

git rm -r directory-to-remove

Remove the directory directory-to-remove from the

repository and the filesystem

Read documentation

Comparing files

Git provides tools that can help you compare different ver-

sions of your project’s files.

git diff

Compare uncommitted changes to the last commit

Read documentation

git diff --cached

Compare staged changes to the last commit

Read documentation

git diff object-before object-after

Compare object-before and object-after, which may be

commits, branches, or tags

Read documentation

git diff --word-diff=color

Compare by words, not lines, with color to distinguish

between words added and removed; by default, words

are split at whitespace

Read documentation

Committing changes

Commits are snapshots of your project. Committing saves

the state of your (staged) files and allows you to explore the

history of your project.

git commit

Create a new commitwith the changes in the staging area

Read documentation

git commit --dry-run

See the effect git commitwould have, but don’t actually

commit anything

Read documentation

git commit --all

Skip the git add step by including previously tracked (not

new; compare to git add --all) files that have been modi-

fied or deleted; shortened as git commit -a

Read documentation

git commit --message="Message about the commit"

Skip the step of opening a text editor to specify a commit

message; shortened as git commit -m "Message about

the commit"

Read documentation

git commit -am "Message about the commit"

Combine the effects of the previous two commands

Read documentation

https://git-scm.com/docs/git-rm
https://git-scm.com/docs/git-rm
https://git-scm.com/docs/git-rm
https://git-scm.com/docs/git-rm
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-commit

5

git commit --amend

Replace the previous commit; not recommended if you

have already shared your project with others

Read documentation

Viewing the project history

Git provides a tool that allows you to view the history (com-

mits) of a project.

git log

View information about commits

Read documentation

git log --graph --all --oneline

Show all commits with a visual representation of the as-

sociations between commits

Read documentation

git log --graph --all --abbrev-commit --date=relative

Similar to the previous command, but with additional in-

formation about each commit and a timestamp relative

to the current time

Read documentation

Managing tags

Tags allow you to annotate specific commits and add infor-

mation like version numbers.

Tags must be transferred to remotes explicitly. Use git

push your-remote-name some-tag-name or git push your-

remote-name --tags. To delete, use git push your-remote-

name --delete some-tag-name.

git tag

List tags

Read documentation

git tag -a some-tag-name -m "Message about the tag"

Annotated tag; by convention, some-tag-name is often

something like v1.0; includes tagger name and email,

date, and message (compare to below command)

Read documentation

git tag some-tag-name

A “lightweight” tag some-tag-name, which does not in-

clude tagger information, date, or message (compare to

above command)

Read documentation

git tag -d some-tag-name

Delete the tag some-tag-name

Read documentation

Working with branches

Branches allow projects to exist in multiple states at the

same time and can facilitate collaboration when working

with others.

git branch

List branches

Read documentation

git branch some-new-branch

Create branch some-new-branch, but don’t switch to it

(compare to git switch --create some-new-branch)

Read documentation

git branch --delete some-branch-to-delete

Delete branch some-branch-to-delete

Read documentation

git switch some-other-branch

Change to branch some-other-branch

Read documentation

Switching to a different branchmay fail if doing sowould

https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-switch

6

result in a loss of information (this is essentially the same as

amerge conflict). You can perform amerge when switching

by adding --merge.

git switch --create some-new-branch

Create—and switch to (compare to git branch)—a new

branch some-new-branch; shortened as git switch -c

some-new-branch

Read documentation

git merge branch-to-merge-into-current

Merge branch-to-merge-into-current into the current

branch

Read documentation

git mergetool

Start a tool to help with conflict resolution for merges;

note that you may need to configure a specific tool first

Read documentation

A merge may fail if there are conflicts. Conflicts oc-

cur when the same parts of a project have been modified

on more than one branch involved in a merge. A merge

conflict will require manual intervention; you will need to

review files before making another commit. https://git-

scm.com/docs/git-merge#_how_to_resolve_conflicts

Working with the stash

The stash allows you to quickly store your working directory

and index. With the stash, you can savewhat you’reworking

on without creating a commit. It’s useful for quick tests.

git stash list

View entries in the stash list

Read documentation

git stash push

Move working directory to stash; equivalent to git stash

Read documentation

git stash pop some-stash-entry

Inverse ofgit stashpush; moves entry from stash towork-

ing directory (and removes entry from stash list; compare

to git stash apply some-stash-entry)

Read documentation

git stash apply some-stash-entry

Inverse ofgit stashpush; moves entry from stash towork-

ing directory (and does not remove entry from stash list;

compare to git stash pop some-stash-entry)

Read documentation

git stash pop and git stash applymay fail if there are

conflicts. This is similar to amerge conflict, though it applies

to unstaged files.

git stash drop some-stash-entry

Remove the entry some-stash-entry from the stash list

Read documentation

Working with remotes

Remote repositories allow you to share your work with oth-

ers and collaborate on projects.

git remote add your-remote-name remote-location

Add a remote named your-remote-name pointing to

remote-location

Read documentation

When using git clone to clone a remote repository, the

remote is named origin by default (unless this has been

changed in the configuration).

git pull your-remote-name branch-name

Pull branch-name from your-remote-name into the local

repository

Read documentation

https://git-scm.com/docs/git-switch
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-mergetool
https://git-scm.com/docs/git-merge#_how_to_resolve_conflicts
https://git-scm.com/docs/git-merge#_how_to_resolve_conflicts
https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-pull

7

git push your-remote-name branch-name

Push branch-name from the local repository to remote

your-remote-name

Read documentation

git pull and git push may fail if there are conflicts. A

conflict with a pull is similar to a merge conflict. A conflict

with a push can usually be fixed by pulling changes from

the remote repository first. https://git-scm.com/docs/git-

push/2.1.4#_note_about_fast_forwards

Reverting and resetting

Reverting and resetting both allow you to undo changes

(commits) to your project, but they function very differently.

Reverting

Reverting is always an additive change; it does not change

theproject history. This is generally preferredwhenworking

with others.

git revertwill revert the changes in only one commit at

a time. It must be done for each commit to be reverted. (A

range can be used to simplify this process.)

git revert some-commit

Undo the changes in some-commit by creating a new

commit

Read documentation

git revert some-commit..some-other-commit

Revert the changes in a range of commits from some-

commit (exclusive; see note below) to some-other-

commit

Read documentation

git revert some-commit..

Revert the changes in a range of commits beginning at

some-commit (exclusive; see note below)

Read documentation

The beginning of the range is not included in the

commits that will be reverted. Use git revert some-

commit^..some-other-commit to include the first commit

in the reversion.

Using a range will result in many new commits if you

are reverting many commits (one each). You may want to

use (git revert --no-commit some-commit..some-other-

commit && git commit), which will result in one commit

instead of several.

It is a little more difficult to revert a merge. Git does

not know which of the two (or more) branches to keep;

there’s a fork in the road. Note that git show merge-

commit will include a line like “Merge: first-commit-in-

merge second-commit-in-merge.” The commandgit revert

merge-commit -m 1will revert to the state in first-commit-

in-merge; git revert merge-commit -m 2will revert to the

state in second-commit-in-merge.

Resetting

Resetting can change the history of your project. It is gen-

erally not recommended when working with others (if you

have already shared your project files).

Please read the documentation on git reset before using

it. It changes the history of the project andmay cause you to

lose information. git reset some-object affects the current

branch reference (compare to git checkout some-object).

git reset --soft some-object

Move to some-object, but keep the working directory and

staged changes as-is

Read documentation

git reset --mixed some-object

Move to some-object and move staged changes to the

working directory

Read documentation

https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-push/2.1.4#_note_about_fast_forwards
https://git-scm.com/docs/git-push/2.1.4#_note_about_fast_forwards
https://git-scm.com/docs/git-revert
https://git-scm.com/docs/git-revert
https://git-scm.com/docs/git-revert
https://git-scm.com/docs/git-reset
https://git-scm.com/docs/git-reset

8

git reset --hard some-object

Move to some-object and discard working directory and

staged changes

Read documentation

Rebasing

A rebase moves a commit to a new base (parent). In effect,

it allows you to move commits around on the graph. It also

allows you to combine commits, which can be helpful when

you have a series of small changes andwant to simplify your

project history.

Rebasing changes the project history. Generally, you

should avoid this if you have already shared your commits

with others (on a remote repository, for instance).

git rebase branch-name

Rebase the current branch on top of branch-name

Read documentation

A rebase can fail if there are conflicts. It proceeds one

commit at a time; if there is a conflict, you will need to re-

solve it and commit your changes. You can then use git

rebase --continue to proceed with the rebase that was in-

terrupted by the conflict.

git rebase --interactive some-object

Rebase starting at some-object, which is useful if you

want to combine or amend commits; shortened as git

rebase -i some-object

Read documentation

Moving to a different project state

You can work “on top of” a specific commit (or branch or

tag). (In effect, you are viewing the state of a project at a

different commit.)

git checkout some-object

Move HEAD (the current view of the project) to some-

objectwithout affecting the current branch reference

(compare to git reset some-object)

Read documentation

Performing a checkout on a specific commit (not the tip

of a branch) yields a state called “detached HEAD.” You can

checkout a branch to return HEAD to the tip of a branch.

https://git-scm.com/docs/git-reset
https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/git-checkout

	Conventions in this reference
	Getting help
	Inspecting objects
	Initializing a repository
	Configuring Git
	Global configuration
	Local configuration
	Viewing the configuration

	Viewing the status of a repository
	Working with the staging area
	Adding files
	Removing files

	Comparing files
	Committing changes
	Viewing the project history
	Managing tags
	Working with branches
	Working with the stash
	Working with remotes
	Reverting and resetting
	Reverting
	Resetting

	Rebasing
	Moving to a different project state

