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Overview

• Quick introduction.
• Parallel loops.
• Parallel loop directives.
• Parallel sections.
• Some more advanced directives.
• Summary.
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Shared memory 
• All processors have 

access to local memory
• Simpler programming
• Concurrent memory 

access
• More specialized 

hardware
• CHPC : 

Linux clusters 12 - 64 
core nodes
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Presenter
Presentation Notes
Local memory – either through a bus – but bus gets saturated with more CPUs – adding cache helps decrease traffic on the bus
                     - or via a switch – fast switches are very expensive
                     = often a compromise, smaller switch on a top of the bus
Simpler programming – all processes share memory – don’t have to worry about data synchronization
Concurrent MA + memory synchronization when have cache – this can slow down execution as processes have to wait if the memory is being accessed by other process.
Inca – bus based
Raptor – distributed memory banks on node boards that include 2 CPUs and memory, but connected via fast bus, max. 128 CPUs



OpenMP basics

• Compiler directives to parallelize
 Fortran – source code comments
!$omp parallel/!$omp end parallel

 C/C++ - #pragmas
#pragma omp parallel

• Small set of subroutines, environment variables
!$  iam = omp_get_num_threads()

OMP_NUM_THREADS=4
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Directives
Runtime
Library 
routines

Environment
variables

Presenter
Presentation Notes
OpenMP – not a new language
comp. Directives – specific format for Fortran and C – need a special compiler
Subroutines – small library to query and set no. of nodes, process node number,…
subr. can be commented out as shown so only the OMP compiler will include this line in the compilation
this is done via !$ in Fortran and via $define/$ifdef preprocessor directives in C/C++
So in summary, directives are the core, then some routines and optionally env. vars.



Programming model

• Shared memory, thread based parallelism
• Explicit parallelism
• Nested parallelism support
• Fork-join model
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Example 1 –
numerical integration

27-Oct-21 http://www.chpc.utah.edu Slide 6

[ ]

[ ] [ ]∑

∑∫
−

=

=
−

++

=+≈

1

1
0

1
1

)()()(
2
1

)()(
2
1)(

n

i
in

n

i
ii

b

a

xfhxfxfh

xfxfhxf



Program code
program trapezoid

integer n, i
double precision a, b, h, x, integ, f

print*,"Input integ. interval, no. of trap:"
read(*,*)a, b, n
h = (b-a)/n
integ = 0.

do i=1,n-1
x = a+i*h
integ = integ + f(x)

enddo

integ = integ + (f(a)+f(b))/2.
integ = integ*h

print*,"Total integral = ",integ
end
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1.

2.

3.

!$omp parallel do reduction(+:integ) private(x)

FORK

JOIN
parallel
region

m
aster 

thread

Presenter
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…




Program output
lp001:>%module load gcc

lp001:>%gfortran –fopenmp trap.f -o 
trap

lp001:>%setenv OMP_NUM_THREADS 12

lp001:>%trap

Input integ. interval, no. of trap:

0 10 100

Total integral =    333.3500000000001
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Presenter
Presentation Notes
first – compilation line, just for a reminder
then, set max. number of threads – default is 8, it’s too much for this example, so set it to 4
Then run the program



Parallel do directive

• Fortran
!$omp parallel do [clause [, clause]]

[!$omp end parallel do]

• C/C++
#pragma omp parallel for [clause [clause]]

• Loops must have precisely determined trip count
 no do-while loops
 no change to loop indices, bounds inside loop (C)
 no jumps out of the loop (Fortran – exit, goto; C – break, goto)
 cycle (Fortran), continue (C) are allowed
 stop (Fortran), exit (C) are allowed
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Presenter
Presentation Notes
trip count = no do-while loops, no loop bounds, also no modification to the loop index
goto can be used but must be directed to inside of the loop
cycle, continue, will do next loop iteration – OK
stop, exit will terminate execution of the whole program – e.g. if there is an error in one of the iterations (division by zero), the program will terminate



Clauses
• Control execution of parallel loop
 scope (shared, private)

sharing of variables among the threads
 if

whether to run in parallel or in serial
 schedule

distribution of work across the threads
 collapse(n)

combine nested loops into a single loop for more parallelism
 ordered

perform loop in certain order
 copyin

initialize private variables in the loop

27-Oct-21 http://www.chpc.utah.edu Slide 10

Presenter
Presentation Notes
Clause = control of the loop:
Scoping clauses (private, shared,…)
If clause – whether the loop runs in parallel or serial
Schedule – how will iterations distribute across the threads
Ordered – if there is some ordering between the successive iterations (which limits parallelization)
Copyin – initialization of certain private variables




Data sharing
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• private – each thread creates a private 
instance

• not initialized upon entry to parallel region
undefined upon exit from parallel region

• default for loop indices, variables declared inside 
parallel loop

• shared – all threads share one copy
• update modifies data for all other threads
• default everything else
• Changing default behavior
• default (shared | private | none)

Presenter
Presentation Notes

- maybe add a line on changing default scope – default (private | shared | none), no private in C, because many library functions are defined as macros with global variables, which are just defined once in the program run.



Data reduction
• Threads distribute work
• Need to collect work at the end

– sum up total
– find minimum or maximum

• Reduction clause – global operation on a 
variable

!$omp parallel do reduction(+:var)
#pragma omp parallel for reduction(+:var)

• Allowed operations - commutative
– +, *, max, min, logical
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Data dependence

• Data in one loop iteration often depend on 
data written in another loop iteration

• Anti-dependence
race between statement S1 writing and S2 reading

 removal: privatization
• Output dependence

values from the last iteration used outside the loop
 removal: lastprivate clause

• Flow dependence
data at one iteration depend on data from another 
iteration

 removal: reduction, rearrangement, often impossible
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x = a(i)
b(i) = c + x

a(i) = a(i+1) + x

Presenter
Presentation Notes
Data dependence – data in the loop depend on other loop generated data - result of a loop operation may be vary with circumstances
Anti – e.g. one iteration reads data that are written by a previous iteration
Output - …
Flow – several different kinds, some of them can’t be removed easily (= it may be more expensive to remove them than to run in serial)



Removing data 
dependencies

• Serial trapezoidal rule
integ = 0.
do i=1,n-1

x = a+i*h
integ = integ + f(x)

enddo

• Parallel solution
integ = 0.

!$omp parallel do 
do i=1,n-1

x = a+i*h
integ = integ + f(x)

enddo
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reduction (+:integ)private(x)

Thread 1
x=a+i*h

integ=integ+f(x)

Thread 2

x=a+i*h

integ=integ+f(x)

x – anti-dependence – privatization
integ – flow dependence - reduction

Presenter
Presentation Notes
One of the simplest cases – x and integ is shared by default – x can be overwritten in each iteration
if make both of them private, then the code won’t keep value of integ at the exit and won’t initialize it at the loop entry
Solution – use integ as a reduction variable



Variable initialization 
and finalization

• firstprivate/lastprivate clause
 initialization of a private variable
!$omp parallel do firstprivate(x)

 finalization of a private variable
!$omp parallel do lastprivate(x)
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Presenter
Presentation Notes
remark – floating point reduction can give different result depending on number of threads used – due to f.p. precision limits
initializes/finalizes private variable
init – copy variable serial part value into each separate thread private value
fin. – copy variable from the last loop iteration back into the serial variable past the parallel section



Parallel overhead

• Parallelization costs CPU time
• Nested loops

parallelize the outermost loop
• if clause

parallelize only when it is worth it – above certain 
number of iterations:

!$omp parallel do if (n .ge. 800)
do i = 1, n

...
enddo
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Presenter
Presentation Notes
Loop nests – multiple embedded loops
if – only if time savings from the parallel execution overcome the overhead from the parallel loop creation



Load balancing –
scheduling

• user-defined work distribution
schedule (type[, chunk])

• chunk – number of iterations contiguously 
assigned to threads

• type
 static – each thread gets a constant chunk
 dynamic – work distribution to threads varies
 guided – chunk size exponentially decreases
 runtime – schedule decided at the run time
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Presenter
Presentation Notes
= e.g. if time spent in each iteration varies
static – by default – static with chunk size = no of iterations/no of processors
	- if define chunk size, the processors are loaded with the chunks at the start of the loop executions – no way to switch execution of the chunk from slower to faster CPU
dynamic – each CPU is assigned one chunk at the startup, and then gets more when it’s finished. Must be aware of the balance between small chunk size (which gives better load balance) and overhead from parallelization (which increases with more chunks to be distributed)
guided – each chunk is ½ of the previous chunk size, starting from a certain system value (often P/N) – advantage – less chunks with good load balance, but bigger parallel overhead
runtime – either set by environment variable OMP_SCHEDULE “type,chunk”, or if absent, decided by the system



Static schedule timings
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Presenter
Presentation Notes
Shows timing of performing trapezoidal loop with 1 mil. trapezoids using different chunk sizes with static schedule.
One thing to note is a radical increase of the execution time with small chunk sizes – due to large parallel overhead (must divide and distribute the loop more). 
Also, 4 threads seems to be ideal, with more threads the scheduling gets more complicated and takes more time to distribute (this is especially obvious at small chunk size).
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Presenter
Presentation Notes
this compares the three different schedule types. Few things to note here:
dynamic schedule slowest with small chunk size – large overhead for the scheduling
static slowest at large chunks – here comes into play the dynamic work assignment 
guided best overall – but that may be only for this case when have a lot of relatively quick iterations.
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Example 2 
numerical integration
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New concepts:
- Threadprivate
- Parallel regions

Presenter
Presentation Notes
trapezoidal rule – approximate integral by area underneath the function, the area can be obtained by summing subareas that are formed by trapezoids, which upper side approximates the function curve (picture)
The formula can be further simplified for faster execution
It is easily parallelized, each node calculates certain interval on the function



Example 2 
MPI-like parallelization

#include <stdio.h>
#include "omp.h"
#define min(a,b) ((a) < (b) ? (a) : (b))

int istart,iend;
#pragma omp threadprivate(istart,iend)

int main (int argc, char* argv[]){
int n,nthreads,iam,chunk; float a, b;
double h, integ, p_integ;
double f(double x);
double get_integ(double a, double h);

printf("Input integ. interval, no. of trap:\n");
scanf("%f %f %d",&a,&b,&n);
h = (b-a)/n;
integ = 0.;
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1.

2.

istart, iend – global variables

f, get_integ – local functions

Presenter
Presentation Notes
This example calculates the same thing as Ex.1, but using different approach, and in C, for a change.
I try to illustrate several new concepts in this example which I touch on as we go through the code and
detail on further slides.
threadprivate construct sets private scope in parallel threads for global variables (in C) and common blocks (in Fortran)
   also note that we are declaring more variables in this version, which will come obvious later
   and finally, we are using function get_integ to calculate the integral
2. Reads in the integral limits and sets variable integ, which is the global integral



Example 2, cont.

#pragma omp parallel shared(integ) 
private(p_integ,nthreads,iam,chunk){
nthreads = omp_get_num_threads();
iam = omp_get_thread_num();
chunk = (n + nthreads -1)/nthreads;
istart = iam * chunk + 1;
iend = min((iam+1)*chunk+1,n);

p_integ = get_integ(a,h);

#pragma omp atomic
integ += p_integ;

}
integ += (f(a)+f(b))/2.;
integ *= h;
printf("Total integral = %f\n",integ);
return 0;}
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3.

4.

5.

6.

parallel section, explicit 
computation distribution

explicit reduction via mutual  
exclusion (atomic is faster
but only works on one operation)

function call with global variables 
inside

istart, iend – threadprivate global 
variables

Presenter
Presentation Notes
3. we parallelize using different construct – parallel – which just splits execution onto each thread in a similar way as MPI does – the main difference – variables are shared by default, so we have to privatize those that are used locally
    we must calculate the interval which will each thread calculate, for that we need to know number of threads and index of each thread, from that we get the chunk and bounds. Note that we did not privatize the bounds, although they will be different on each thread – this is because this was done by threadprivate already.
4. Call the function to calculate the local integral – bounds are not passed as arguments because they are a global variable
5. Another new concept – need to sum the local integral into a global one – the critical section is used to limit execution of the statement by one thread at the time
6. Finally, exit the parallel section, the master thread finishes the integral calculation and prints out the result.



double get_integ(double a, double h)
{
int i;
double sum,x;

sum = 0;
for (i=istart;i<iend;i++)
{

x = a+i*h;
sum += f(x);

}
return sum;
}
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Example 2, cont.

istart, iend – threadprivate global 
variables

Presenter
Presentation Notes
Just how the local integral function looks like. Same as in the first example, note that istart and iend are global variables so they are not declared, variables declared in the function are private, as they are allocated in the thread’s address space with the whole function.
Here also explain static and dynamic extent of the parallel region:
Static is within lexical scope of the parallel region
Dynamic is e.g. in a subroutine, which can also be called from a serial part of the code. In this case, if use global/common block variables in the subroutine, their scope (private, shared) will be shared, unless they are made threadprivate by definition. This avoids possible problems ambiguous scope definition. 
Also, if pass the private variables as function arguments, they will be private in the function.



Parallel regions
• Fortran
!$omp parallel … !$omp end parallel

• C/C++
#pragma omp parallel

• SPMD parallelism – replicated execution
• must be a self-contained block of code – 1 entry, 1 

exit
• implicit barrier at the end of parallel region
• can use the same clauses as in parallel 
do/for
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Work-sharing constructs

• DO/for loop – distributes loop - do directive 
• Sections – breaks work into separate, discrete 

sections - section directive 
• Workshare – parallel execution of separate units of 

work - workshare directive 
• Single/master – serialized section of code - single

directive 

27-Oct-21 http://www.chpc.utah.edu Slide 25

FORK

JOIN

DO/for loop

FORK

JOIN

Sections

FORK

JOIN

Single



Work-sharing cont.

• Restrictions:
 continuous block; no nesting
 all threads must reach the same construct
 constructs can be outside lexical scope of the parallel 

construct (e.g. subroutine)
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threadprivate variables

• global/common block variables are private  
only in lexical scope of the parallel region

• possible solutions
 pass private variables as function arguments
 use threadprivate – identifies common 

block/global variable as private
 !$omp threadprivate (/cb/ [,/cb/] …)
#pragma omp threadprivate (list)

 use copyin clause to initialize the threadprivate
variable

e.g. !$omp parallel copyin(istart,iend)
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= if call subroutine from a parallel region, it is outside its lexical scope (e.g. subroutine can be also called from  non-parallelized region) => the global/common block variables that the subroutine can use will be shared by default.
this works as follows: each thread initializes the threadprivate variables as private at the start of the first parallel region. When it exists this parallel region, the slave threads remain dormant and keep the values of the threadprivate variables. If restart parallel section with different no. of threads, the old threads are erased and new created with initially undefined threadprivate variables



Mutual exclusion
• critical section
 limit access to the part of the code to one 

thread at the time
!$omp critical [name]
...
!$omp end critical [name]

• atomic section
 atomically updating single memory location
sum += x

• also available via runtime library functions
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ME – access restriction to a part of the code
critical sec. – 
   named c. s. limits access to one thread only to the section with this name = other thread can access c.s. with other name at the same time
atomic sec. – special machine instructions that perform read, operation, write at one cycle. Limited to just one operation of atomic type – e.g. sum += x
runtime library routines – full set of lock access (set, release, query).



task construct

• Used to parallelize irregular, recursive 
algorithms

• All tasks run independent of each other in 
parallel, on up to OMP_NUM_THREADS

• Use taskwait to wait for all tasks to finish
• Each task has its own data space – use 
mergeable for shared variables to reduce 
storage needs

• Use depend to specify data dependencies
• Often started from serial section
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• Calculate Fibonacci number using recursion
int fib(int n) {
int i, j;
if (n<2) return n;
else {
#pragma omp task shared(i) 
i=fib(n-1);

#pragma omp task shared(j)
j=fib(n-2);

#pragma omp taskwait
return i+j;
}
#pragma omp parallel {
#pragma omp single {
fibn = fib(n); }}

task example
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independent task #1

recursive function

independent task #2

wait till completion of both tasks
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Event synchronization

• barrier - !$omp barrier
 synchronizes all threads at that point
• ordered - !$omp ordered
 imposes order across iterations of a parallel 

loop
• master - !$omp master
 sets block of code to be executed only on the 

master thread
• flush - !$omp flush
 synchronizes memory and cache on all threads
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barrier – must be invoked from parallel region, can’t be used in work-sharing constructs
ordered – 
master – most often used to restrict I/O operations on one thread
flush – must be across all the threads in the parallel region
	- by default flushes all shared variables, used can provide a list of variables to be flushed after the directive



Library functions, 
environmental variables

• thread set/inquiry
omp_set_num_threads(integer)
OMP_NUM_THREADS
integer omp_get_num_threads()
integer omp_get_max_threads()
integer omp_get_thread_num()

• set/query dynamic thread adjustment
omp_set_dynamic(logical)
OMP_DYNAMIC
logical omp_get_dynamic()
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Library functions, 
environmental variables

• lock/unlock functions
omp_init_lock()
omp_set_lock()
omp_unset_lock()
logical omp_test_lock()
omp_destroy_lock()

• other
integer omp_get_num_procs()
logical omp_in_parallel()

OMP_SCHEDULE
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there is also several functions related to nesting of parallel constructs, but nesting is not fully supported in the OMP 1 specification. These functions include get and set nest (to query and allow nesting) and nested versions of the lock routines.



Advanced OpenMP

• nested parallel loops
• accelerator support (4.0)
• user defined reduction (4.0)
• thread affinity (4.0)
• SIMD (=vectorization) (4.0)
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parallel do – simplest way to parallelize
if the variable is shared by all the iterations or private to them, how to initialize/finalize private variable
- parallelization produces overhead – we have to be aware of it and design the code accordingly, to load balance the execution, can use various scheduling options



Summary

• parallel do/for loops
 variable scope, reduction
 parallel overhead, loop scheduling
• parallel regions
 mutual exclusion
 work sharing, tasking
 synchronization

http://www.chpc.utah.edu/short_courses/intro_openmp
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parallel do – simplest way to parallelize
if the variable is shared by all the iterations or private to them, how to initialize/finalize private variable
- parallelization produces overhead – we have to be aware of it and design the code accordingly, to load balance the execution, can use various scheduling options



References
• Spec
http://www.openmp.org/

• Books
Chapman, Jost, van der Pas – Using OpenMP
Pacheco – Introduction to Parallel Computing
• Wednesday 11/3, 9am-3pm - XSEDE 

Monthly Workshop – OpenMP
• XSEDE online training 

https://www.xsede.org/web/xup/online-training
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Addl’ interesting topics
 - task construct for recursion, etc (incl. taskwait to prevent too many tasks running at the same time)
 - cancel clause for try/catch jump out of the loop�

http://www.openmp.org/
https://www.xsede.org/web/xup/online-training
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