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Overview

• Types of parallel computers.
• Parallel programming options.
• OpenMP, OpenACC, MPI
• Higher level languages
• Debugging, profiling and libraries
• Summary, further learning.
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How to compute 
faster

• Faster CPU clock speed
– Higher voltage = more heat – not sustainable

• Work distribution
– Vectorization – process more than one value 

at a time
– Parallelization – spread work over multiple 

processing elements
– Specialization – application specific 

processors (ASIC), programmable logic 
(FPGA)
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Computer architectures

Single processor:
• SISD – single instruction single data.
Multiple processors:
• SIMD - single instruction multiple data.
• MIMD – multiple instruction multiple data.

 Shared Memory
 Distributed Memory

 Current processors combine SIMD and MIMD
 Multi-core CPUs w/ SIMD instructions (AVX, SSE)
 GPUs with many cores and SIMT 
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Shared memory 
• All processors have 

access to local memory
• Simpler programming
• Concurrent memory 

access
• More specialized 

hardware
• Representatives:

– Linux clusters nodes 12-
128 cores

– GPU nodes
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Distributed memory

• Process has access only 
to its local memory

• Data between processes 
must be communicated

• More complex 
programming

• Cheap commodity 
hardware

• Representatives: 
Linux clusters 
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Ways of program 
execution

• Process (task)
Entity that executes a program – has its own memory 
space, execution sequence, is independent from other 
processes

• Thread
Has own execution sequence but shares memory 
space with the original process - a process may have 
many threads
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Parallel programming 
options

Shared Memory
• Threads 

– POSIX Pthreads, OpenMP (CPU, GPU), OpenACC, Nvidia 
CUDA, AMD HIP, Intel Sycl (GPU)

• Processes 
– message passing, independent processes

Distributed Memory
• Independent processes
• Message passing libraries

– General – MPI, PVM, language extensions (Co-array Fortran, 
UPC. …)

Higher level programming languages (Python, R, Matlab) 
do a combination of these approaches under the hood.
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Parallel programming 
options hierarchy

• Instruction level (ILP)
– Instruction pipelining, speculative 

execution, branch prediction, …
• Vector (SIMD)
• Multi-core/Multi-socket SMP
• Accelerators (GPU, MIC)
• FPGA, ASIC
• Distributed clusters 
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Mapping programming 
options to the hardware
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OpenMP basics
• Compiler directives to parallelize (CPU or GPU)
 Fortran – source code comments
 !$omp parallel/!$omp end parallel

 C/C++ - #pragmas
 #pragma omp parallel

• Small set of subroutines
• Degree of parallelism specification
 OMP_NUM_THREADS or 
omp_set_num_threads(INTEGER n)
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OpenACC Basics
• Compiler directives to offload to GPU
 Fortran – source code comments
 !$acc kernels/!$acc end kernels

 C/C++ - #pragmas
 #pragma acc kernels

• Small set of subroutines
• Data movement and locality directives
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MPI Basics
• Communication library
• Language bindings:
 C/C++ - int MPI_Init(int argv, char* 
argc[])

 Fortran - MPI_Init(INTEGER ierr)

• Quite complex (100+ subroutines)
 but only small number used frequently
• User defined parallel distribution
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Program example

• saxpy – vector addition:
• simple loop, no cross-dependence, easy to 

parallelize
subroutine saxpy_serial(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return
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OpenMP program
 example

subroutine saxpy_parallel_omp(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$omp parallel do
do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return

$ gfortran –fopenmp saxpy.f

$ export OMP_NUM_THREADS=16

$ ./a.out
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OpenMP caveats
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• Data dependencies
– Private (thread-local) variables
– Flow dependence – rearrangement
– Reduction (sum over threads)

• Scheduling
– What runs on what thread – schedule, task,…

• Advanced features
– Thread affinity (to CPU core)
– Vectorization
– Accelerator offload

x = a(i)
b(i) = c + x

a(i) = a(i+1) + x

x += a(i)
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OpenACC program
 example

subroutine saxpy_parallel_oacc(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$acc kernels datain(x,y) dataout(z)
do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return

$ nvfortran –acc –Minfo=accel saxpy.f

$ nvaccelinfo

$ ./a.out
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OpenACC caveats
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• Data dependencies (Like in OpenMP)
• Data locality

– Transfers from host to GPU and back take time 
– need to minimize them
#pragma acc data [copyin, copyout, create,...]

• Parallel regions
– More explicit execution control (warps, threads)
#pragma acc parallel

•  Procedure calls
– If procedure is executed on the GPU
#pragma acc routine

https://git.io/CHPC-Intro-to-Parallel-Computing



MPI program example

subroutine saxpy_parallel_mpi(z, a, x, y, n)
integer i, n, ierr, my_rank, tasks, i_st, i_end
real z(n), a, x(n), y(n)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,tasks,ierr)
i_st = n/tasks*my_rank+1
i_end = n/tasks*(my_rank+1)

do i=i_st, i_end
 z(i) = a*x(i) + y(i)
enddo
call MPI_Finalize(ierr)
return
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MPI program example
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• Result on the first CPU
include "mpif.h"
integer status(MPI_STATUS_SIZE)
if (my_rank .eq. 0 ) then
  do j = 1, tasks-1
    do i= n/tasks*j+1, n/tasks*(j+1)
      call MPI_Recv(z(i),1,MPI_REAL,j,0,MPI_COMM_WORLD,
&     status,ierr)
    enddo
  enddo
else
  do i=i_st, i_end
   call MPI_Send(z(i),1,MPI_REAL,0,0,MPI_COMM_WORLD,ierr)
  enddo
endif

Data Count
Sender

Recipient

P0

P1

P2

P3
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MPI program example

• Collective communication
real zi(n)
j = 1
do i=i_st, i_end

zi(j) = a*x(i) + y(i)
j = j +1

enddo
call MPI_Gather(zi,n/nodes,MPI_REAL,z,n/nodes,MPI_REAL,
&               0,MPI_COMM_WORLD,ierr)

• Result on all nodes
call MPI_AllGather(zi,n/nodes,MPI_REAL,z,n/nodes,
&               MPI_REAL,MPI_COMM_WORLD,ierr)
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MPI caveats

24-Jun-24 Slide 22

• Explicit task based parallelism
– manual work distribution
– task communication and synchronization

• Communication patterns
– due to different data distribution

• Many advanced features
– blocking vs. non-blocking communication
– derived data types
– topologies
– …

broadcast
reduction
gather/scatter
…
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MPI distributions

• Different networks 
– Ethernet
– InfiniBand
– Intel OmniPath
– most MPI distributions now come with multiple networks 

support
• Several distributions follow the MPI standard

– MPICH, MVAPICH2
– Intel MPI, Cray MPI,…
– OpenMPI
– Ensure that build and run is done with the same distribution 

(ABI compatibility)
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Hands on

• Log into to ondemand.chpc.utah.edu
• Go to Jobs – Job Composer
• Click on Templates
• Show 50 entries
• Choose and run the following jobs:

– Simple OpenMP job
– Simple MPI job
– Modify the *.sh SLURM job script
– In both cases, use notchpeak-shared-short as the account 

and partition and notchpeak as a cluster
• Bonus – run Simple hybrid MPI and OpenMP Job
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But wait, my program is 
not in C or Fortran

Interpreted languages are popular
• Matlab, Python, R

Each has some sort of parallel support, but most 
likely it will not perform as well as using OpenMP 
or MPI with C/Fortran.

Try to parallelize (and optimize ) your 
Matlab/Python/R code and if it’s still not enough 
try to find libraries that can do the work, or 
consider rewriting in C++ or Fortran.
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Cluster running options 
for Matlab, Python, R

• Using parallelization in the program run through 
interactive or batch job
– multi-threading and/or multi-processing packages 

(parfor, mpi4py, R parallel, Rmpi, …)
• Using built in job submission

– Matlab Parallel Server, rslurm, python Dask, 
snakemake

• Independent calculations in parallel
– launching concurrent calculations in a job 
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Matlab

Threads
• Built in Matlab functions. Vector/matrix operations 

threaded (and vectorized) through Intel MKL library, 
many other functions also threaded

Tasks (processes)
• Parallel Computing Toolbox allows for task based 

parallelism
• Parallel Server can distribute tasks to multiple nodes
• Great for independent calculations, when 

communication is needed uses MPI under the hood
https://www.chpc.utah.edu/documentation/software/matlab.
php
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Matlab tasks

• Parallel program
function t = parallel_example
parfor idx = 1:16
A(idx) = idx;

end

• Parallel worker pool on a single machine
poolobj=parpool('local',8);
parallel_example;
delete(poolobj);

• Parallel pool on a cluster 
c = parcluster; 
c.AdditionalProperties.QueueName = 'kingspeak';
...
j = c.batch(@parallel_example, 1, {}, 'Pool', 4); 
j.State 
j.fetchOutputs{:} 
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Matlab examples

• Parallel worker pool on a single node
– best run from a SLURM job

loop_parallel_onenode.m, run_matlab_onenode.m, 
run_matlab_onenode.slr

– https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
– sbatch run_matlab_onenode.slr

• Parallel worker pool on a multiple nodes
– must run from inside of Matlab
– start Matlab on interactive node inside of a FastX session
ml matlab

matlab &

– loop_parallel.m, parallel_multinode.m
parallel_multinode

24-Jun-24 Slide 29https://git.io/CHPC-Intro-to-Parallel-Computing

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.slr
https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/parallel_multinode.m


Matlab examples

• In OnDemand open a terminal (Clusters – Notchpeak)
• Git clone the repository
git clone https://github.com/CHPC-UofU/CHPC-presentations.git

cd CHPC-presentations/Intro-to-Parallel-Computing/Matlab-examples/

• Either submit the serial job from terminal, or via 
OnDemand

• For the parallel jobs, open Interactive Apps – Matlab and 
run through this Matlab
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R

Threads
• Under the hood threading with specially built (or 

Microsoft) R for vector/matrix operations using MKL
• parallel R library
Tasks (processes)
• parallel R library (uses multicore for shared and snow for 

distributed parallelism)
• Parallelized *apply functions, e.g. mclapply
• Rmpi library provides MPI like functionality
• Many people run multiple independent R instances in 

parallel
https://www.chpc.utah.edu/documentation/software/r-
language.php
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Parallel R on a cluster
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• Load libraries
library(parallel)

library(foreach)

library(doParallel)

• Start R cluster
hostlist <- paste(unlist(read.delim(file="hostlist.txt", 
header=F, sep =" ")))

cl <- makeCluster(hostlist)

registerDoParallel(cl)

clusterEvalQ(cl,.libPaths("/uufs/chpc.utah.edu/sys/installdir/
r8/RLibs/4.2.2"))

• Run parallel loop
r <- foreach(icount(trials), .combine=rbind) %dopar% {}

• Stop R cluster
stopCluster(cl)

hostlist.txt comes from a job script
srun -n $SLURM_NTASKS hostname > hostlist.txt

this is only needed if running on multiple nodes
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R examples

• Parallel R on one node
– best run from a SLURM job

parallel-onenode-iris.R, R-parallel-onenode-iris.slr
– https://git.io/CHPC-Intro-to-Parallel-Computing-R
– sbatch R-parallel-onenode-iris.slr

• Parallel R multiple nodes
– must specify list of nodes where R workers run

parallel-multinode-iris.R, R-parallel-multinode-iris.slr-
– sbatch R-parallel-multinode-iris.slr

• Submit SLURM job directly from R - rslurm
– SLURM-aware apply function, some issues with results 

collection
– rslurm-example.R
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Python

Threads
• No threads in Python code because of GIL (Global 

Intepreter Lock)
• C/Fortran functions can be threaded (e.g. NumPy - 

Anaconda, Numba for Nvidia GPUs)
Tasks (processes)
• Several libraries that use MPI under the hood, most 

popular is mpi4py
• More-less MPI function compatibility, but slower 

communication because of the extra overhead
• Also many other data-parallel libraries, e.g. Dask, Polars
https://www.chpc.utah.edu/documentation/software/python.
php
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Python - Jupyter

• Several options 
listed at 
https://www.chpc.utah.
edu/documentation/soft
ware/jupyterhub.php

• The easiest is to 
use Open 
OnDemand
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Python tasks

• Our personal favorite is to ignore all the Python parallel 
efforts, divide the data into independent parts and run 
multiple Python processes on parts of the data 
concurrently

• Only works if data can be split
• Use various approaches for independent parallel 

calculations listed at 
https://www.chpc.utah.edu/documentation/software/seria
l-jobs.php

• More on this later
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Python tasks

• Tasks can also be easily parallelized with the joblib 
library

import time, joblib

def long_running_function(i):

  time.sleep(0.1)

  return i

with joblib.parallel_config(backend="loky"):

  joblib.Parallel(verbose=100, n_jobs=4)(

    joblib.delayed(long_running_function)(i) for i 
in range(10)

    )
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Python- Dask

• With relatively small effort one can use Dask
• Install Miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-
x86_64.sh  

bash ./Miniconda3-latest-Linux-x86_64.sh -b -p 
$HOME/software/pkg/miniconda3  

mkdir -p $HOME/MyModules/miniconda3  

cp 
/uufs/chpc.utah.edu/sys/installdir/python/modules/miniconda3/latest.lua 
$HOME/MyModules/miniconda3 

• Use own miniconda and install Jupyter and Dask
module use $HOME/MyModules  

module load miniconda3/latest  

conda install jupyter dask "notebook>=6.0"

• Start Open OnDemand Jupyter notebook
– log into ondemand.chpc.utah.edu with CHPC credentials
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Python- Dask

• Go to Interactive Apps - Jupyter Notebook on notchpeak
• In the Environment Setup text box, put  (my Miniconda3):
module use /uufs/chpc.utah.edu/common/home/u0101881/MyModules  

module load miniconda3/dask 

• Use notchpeak-shared-short for account and partition, and 
select your choice of CPU cores and walltime hours (within 
the listed limits). Then hit Launch to submit the job.

• Once the job starts, hit the blue Connect to Jupyter button
• Open one of the following notebooks: 

dask_embarrass.ipynb, dask_slurmcluster.ipynb, 
dask_slurm_xarray.ipynb

• DASK also allows to submit jobs to SLURM (last 2 examples)
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Independent calculations

• Different approaches based on the nature of the 
calculations
– Runtime length, variability, number of calculations

• Similar runtime, small calculation count
– Shell script in a SLURM job

#!/bin/bash
for (( i=0; i < $SLURM_NTASKS ; i++ )); do
  /path_to/myprogram $i &
done
wait

– srun –multi-prog
srun --multi-prog my.conf
cat my.conf
0-11 ./example.sh %t

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php
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Variable runtime

• Mini-scheduler inside of a job
– to launch calculations till all are done
– GNU Parallel - https://www.gnu.org/software/parallel/
– TACC Launcher - https://www.tacc.utexas.edu/research-

development/tacc-software/the-launcher
– CHPC Submit -

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php#submit

• Workflow managers
– Nextflow, Snakemake, Pegasus, Swift

• Distributed computing resources
– Open Science Grid - https://opensciencegrid.org/
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Debuggers
• Useful for finding bugs in programs
• Several free

 gdb – GNU, text based, limited parallel  
 ddd – graphical frontend for gdb

• Commercial that come with compilers
 pgdbg – PGI, graphical, parallel but not intuitive 
 pathdb, idb – Pathscale, Intel, text based

• Specialized commercial
 totalview – graphical, parallel, CHPC has a license
 ddt - Distributed Debugging Tool
 Intel Inspector – memory and threading error checker

• How to use:
 http://www.chpc.utah.edu/docs/manuals/software/par_

devel.html
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Debuggers - parallel

• Parallel debugging more complex due to interaction 
between processes

• DDT is the debugger of choice at CHPC
 Expensive but academia get discount
 How to run it:

 compile with –g flag
 run ddt command
 fill in information about executable, parallelism, …

 Details:
https://www.chpc.utah.edu/documentation/software/debugging

.php

 Further information
https://www.allinea.com/products/ddt
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Debuggers – parallel
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Profilers

• Measure performance of the code
• Serial profiling

– discover inefficient programming
– computer architecture slowdowns
– compiler optimizations evaluation
– gprof, pgprof, pathopt2, Intel tools

• Parallel profiling
– target is inefficient communication
– Intel Trace Collector and Analyzer, Advisor, 

VTune
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Profilers - parallel
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Libraries
• Use libraries for common operations
• Serial
 BLAS, LAPACK – linear algebra routines
 MKL, BLIS – hardware vendor libraries

• Parallel
 ScaLAPACK, PETSc, FFTW
 MKL – dense and sparse matrices

 Design a new code around existing library
 PETSc, Trilinos,…
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Summary

• Shared vs. Distributed memory parallelism
• OpenMP, OpenACC and MPI for low level 

parallelism
• Different approaches for higher level 

languages
• Many ways to run independent calculations 

in parallel
• There are tools for debugging, profiling
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To learn more
• CHPC lectures

– https://www.chpc.utah.edu/presentations/index.php
• ACCESS HPC Summer Boot Camp

– OpenMP, OpenACC, MPI
– https://www.youtube.com/XSEDETraining 

• Petascale Computing Institute
– Wide range of parallel programming topics
– videos at https://bluewaters.ncsa.illinois.edu/bw-

petascale-computing-2019/agenda
• XSEDE online training 

– https://www.xsede.org/web/xup/online-training
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