
Introduction to Parallel
Computing

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

24-Jun-24 Slide 1https://git.io/CHPC-Intro-to-Parallel-Computing

Overview

• Types of parallel computers.
• Parallel programming options.
• OpenMP, OpenACC, MPI
• Higher level languages
• Debugging, profiling and libraries
• Summary, further learning.

24-Jun-24 Slide 2https://git.io/CHPC-Intro-to-Parallel-Computing

How to compute
faster

• Faster CPU clock speed
– Higher voltage = more heat – not sustainable

• Work distribution
– Vectorization – process more than one value

at a time
– Parallelization – spread work over multiple

processing elements
– Specialization – application specific

processors (ASIC), programmable logic
(FPGA)

24-Jun-24 Slide 3https://git.io/CHPC-Intro-to-Parallel-Computing

Computer architectures

Single processor:
• SISD – single instruction single data.
Multiple processors:
• SIMD - single instruction multiple data.
• MIMD – multiple instruction multiple data.

 Shared Memory
 Distributed Memory

 Current processors combine SIMD and MIMD
 Multi-core CPUs w/ SIMD instructions (AVX, SSE)
 GPUs with many cores and SIMT

24-Jun-24 Slide 4https://git.io/CHPC-Intro-to-Parallel-Computing

Shared memory
• All processors have

access to local memory
• Simpler programming
• Concurrent memory

access
• More specialized

hardware
• Representatives:

– Linux clusters nodes 12-
128 cores

– GPU nodes

24-Jun-24 Slide 5

BUS
CPU

CPU

Memory

Memory

Dual quad-core node

BUS

CPU

CPU

Memory

Memory

CPU

CPU

Memory

Memory

Many-CPU node (e.g. SGI)

https://git.io/CHPC-Intro-to-Parallel-Computing

Distributed memory

• Process has access only
to its local memory

• Data between processes
must be communicated

• More complex
programming

• Cheap commodity
hardware

• Representatives:
Linux clusters

24-Jun-24 Slide 6

BUS
CPU

CPU

Memory

Memory

Node Netw
ork

Node

Node

Node

Node

Node

Node

Node

8 node cluster (64 cores)

https://git.io/CHPC-Intro-to-Parallel-Computing

Ways of program
execution

• Process (task)
Entity that executes a program – has its own memory
space, execution sequence, is independent from other
processes

• Thread
Has own execution sequence but shares memory
space with the original process - a process may have
many threads

24-Jun-24 Slide 7

F
O
R
K

J
O
I
NProcess

Threads

https://git.io/CHPC-Intro-to-Parallel-Computing

Parallel programming
options

Shared Memory
• Threads

– POSIX Pthreads, OpenMP (CPU, GPU), OpenACC, Nvidia
CUDA, AMD HIP, Intel Sycl (GPU)

• Processes
– message passing, independent processes

Distributed Memory
• Independent processes
• Message passing libraries

– General – MPI, PVM, language extensions (Co-array Fortran,
UPC. …)

Higher level programming languages (Python, R, Matlab)
do a combination of these approaches under the hood.

24-Jun-24 Slide 8https://git.io/CHPC-Intro-to-Parallel-Computing

Parallel programming
options hierarchy

• Instruction level (ILP)
– Instruction pipelining, speculative

execution, branch prediction, …
• Vector (SIMD)
• Multi-core/Multi-socket SMP
• Accelerators (GPU, MIC)
• FPGA, ASIC
• Distributed clusters

24-Jun-24 Slide 9

Compiler (not
your problem)

OpenMP
OpenACC

Very specialized
MPI

https://git.io/CHPC-Intro-to-Parallel-Computing

Mapping programming
options to the hardware

24-Jun-24 Slide 10

CPU
cores

Memory

Memory
GPU cores

Network

Compute cluster

Compute
node

https://git.io/CHPC-Intro-to-Parallel-Computing

OpenMP basics
• Compiler directives to parallelize (CPU or GPU)
 Fortran – source code comments
 !$omp parallel/!$omp end parallel

 C/C++ - #pragmas
 #pragma omp parallel

• Small set of subroutines
• Degree of parallelism specification
 OMP_NUM_THREADS or
omp_set_num_threads(INTEGER n)

24-Jun-24 Slide 11https://git.io/CHPC-Intro-to-Parallel-Computing

OpenACC Basics
• Compiler directives to offload to GPU
 Fortran – source code comments
 !$acc kernels/!$acc end kernels

 C/C++ - #pragmas
 #pragma acc kernels

• Small set of subroutines
• Data movement and locality directives

24-Jun-24 Slide 12https://git.io/CHPC-Intro-to-Parallel-Computing

MPI Basics
• Communication library
• Language bindings:
 C/C++ - int MPI_Init(int argv, char*
argc[])

 Fortran - MPI_Init(INTEGER ierr)

• Quite complex (100+ subroutines)
 but only small number used frequently
• User defined parallel distribution

24-Jun-24 Slide 13https://git.io/CHPC-Intro-to-Parallel-Computing

Program example

• saxpy – vector addition:
• simple loop, no cross-dependence, easy to

parallelize
subroutine saxpy_serial(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return

24-Jun-24 Slide 14

yxaz +=

https://git.io/CHPC-Intro-to-Parallel-Computing

OpenMP program
 example

subroutine saxpy_parallel_omp(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$omp parallel do
do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return

$ gfortran –fopenmp saxpy.f

$ export OMP_NUM_THREADS=16

$./a.out

24-Jun-24 Slide 15

FORK

JOIN

https://git.io/CHPC-Intro-to-Parallel-Computing

OpenMP caveats

24-Jun-24 Slide 16

• Data dependencies
– Private (thread-local) variables
– Flow dependence – rearrangement
– Reduction (sum over threads)

• Scheduling
– What runs on what thread – schedule, task,…

• Advanced features
– Thread affinity (to CPU core)
– Vectorization
– Accelerator offload

x = a(i)
b(i) = c + x

a(i) = a(i+1) + x

x += a(i)

https://git.io/CHPC-Intro-to-Parallel-Computing

OpenACC program
 example

subroutine saxpy_parallel_oacc(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$acc kernels datain(x,y) dataout(z)
do i=1, n
 z(i) = a*x(i) + y(i)
enddo
return

$ nvfortran –acc –Minfo=accel saxpy.f

$ nvaccelinfo

$./a.out

24-Jun-24 Slide 17

Offload to
GPU

Return
from GPU

To verify that GPU is available

https://git.io/CHPC-Intro-to-Parallel-Computing

OpenACC caveats

24-Jun-24 Slide 18

• Data dependencies (Like in OpenMP)
• Data locality

– Transfers from host to GPU and back take time
– need to minimize them
#pragma acc data [copyin, copyout, create,...]

• Parallel regions
– More explicit execution control (warps, threads)
#pragma acc parallel

• Procedure calls
– If procedure is executed on the GPU
#pragma acc routine

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI program example

subroutine saxpy_parallel_mpi(z, a, x, y, n)
integer i, n, ierr, my_rank, tasks, i_st, i_end
real z(n), a, x(n), y(n)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,tasks,ierr)
i_st = n/tasks*my_rank+1
i_end = n/tasks*(my_rank+1)

do i=i_st, i_end
 z(i) = a*x(i) + y(i)
enddo
call MPI_Finalize(ierr)
return

24-Jun-24 Slide 19

z(i) operation on 4 processes (tasks)

z(1
… n/4)

z(n/4+1
… 2*n/4)

z(2*n/4+1
… 3*n/4)

z(3*n/4+1
… n)

P0 P1 P2 P3

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI program example

24-Jun-24 Slide 20

• Result on the first CPU
include "mpif.h"
integer status(MPI_STATUS_SIZE)
if (my_rank .eq. 0) then
 do j = 1, tasks-1
 do i= n/tasks*j+1, n/tasks*(j+1)
 call MPI_Recv(z(i),1,MPI_REAL,j,0,MPI_COMM_WORLD,
& status,ierr)
 enddo
 enddo
else
 do i=i_st, i_end
 call MPI_Send(z(i),1,MPI_REAL,0,0,MPI_COMM_WORLD,ierr)
 enddo
endif

Data Count
Sender

Recipient

P0

P1

P2

P3

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI program example

• Collective communication
real zi(n)
j = 1
do i=i_st, i_end

zi(j) = a*x(i) + y(i)
j = j +1

enddo
call MPI_Gather(zi,n/nodes,MPI_REAL,z,n/nodes,MPI_REAL,
& 0,MPI_COMM_WORLD,ierr)

• Result on all nodes
call MPI_AllGather(zi,n/nodes,MPI_REAL,z,n/nodes,
& MPI_REAL,MPI_COMM_WORLD,ierr)

24-Jun-24 Slide 21

Send data Receive data

Root process

No root process

zi(i)
z(i)

zi(i)
zi(i)
zi(i) Process 0

Process 1
Process 2
Process 3

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI caveats

24-Jun-24 Slide 22

• Explicit task based parallelism
– manual work distribution
– task communication and synchronization

• Communication patterns
– due to different data distribution

• Many advanced features
– blocking vs. non-blocking communication
– derived data types
– topologies
– …

broadcast
reduction
gather/scatter
…

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI distributions

• Different networks
– Ethernet
– InfiniBand
– Intel OmniPath
– most MPI distributions now come with multiple networks

support
• Several distributions follow the MPI standard

– MPICH, MVAPICH2
– Intel MPI, Cray MPI,…
– OpenMPI
– Ensure that build and run is done with the same distribution

(ABI compatibility)

24-Jun-24 Slide 23https://git.io/CHPC-Intro-to-Parallel-Computing

Hands on

• Log into to ondemand.chpc.utah.edu
• Go to Jobs – Job Composer
• Click on Templates
• Show 50 entries
• Choose and run the following jobs:

– Simple OpenMP job
– Simple MPI job
– Modify the *.sh SLURM job script
– In both cases, use notchpeak-shared-short as the account

and partition and notchpeak as a cluster
• Bonus – run Simple hybrid MPI and OpenMP Job

24-Jun-24 Slide 24https://git.io/CHPC-Intro-to-Parallel-Computing

But wait, my program is
not in C or Fortran

Interpreted languages are popular
• Matlab, Python, R

Each has some sort of parallel support, but most
likely it will not perform as well as using OpenMP
or MPI with C/Fortran.

Try to parallelize (and optimize) your
Matlab/Python/R code and if it’s still not enough
try to find libraries that can do the work, or
consider rewriting in C++ or Fortran.

24-Jun-24 Slide 25https://git.io/CHPC-Intro-to-Parallel-Computing

Cluster running options
for Matlab, Python, R

• Using parallelization in the program run through
interactive or batch job
– multi-threading and/or multi-processing packages

(parfor, mpi4py, R parallel, Rmpi, …)
• Using built in job submission

– Matlab Parallel Server, rslurm, python Dask,
snakemake

• Independent calculations in parallel
– launching concurrent calculations in a job

24-Jun-24 Slide 26https://git.io/CHPC-Intro-to-Parallel-Computing

Matlab

Threads
• Built in Matlab functions. Vector/matrix operations

threaded (and vectorized) through Intel MKL library,
many other functions also threaded

Tasks (processes)
• Parallel Computing Toolbox allows for task based

parallelism
• Parallel Server can distribute tasks to multiple nodes
• Great for independent calculations, when

communication is needed uses MPI under the hood
https://www.chpc.utah.edu/documentation/software/matlab.
php

24-Jun-24 Slide 27https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/matlab.php
https://www.chpc.utah.edu/documentation/software/matlab.php

Matlab tasks

• Parallel program
function t = parallel_example
parfor idx = 1:16
A(idx) = idx;

end

• Parallel worker pool on a single machine
poolobj=parpool('local',8);
parallel_example;
delete(poolobj);

• Parallel pool on a cluster
c = parcluster;
c.AdditionalProperties.QueueName = 'kingspeak';
...
j = c.batch(@parallel_example, 1, {}, 'Pool', 4);
j.State
j.fetchOutputs{:}

24-Jun-24 Slide 28

Will launch loop iterations on
multiple workers

Starts multiple workers pool

Submits cluster job

https://git.io/CHPC-Intro-to-Parallel-Computing

Matlab examples

• Parallel worker pool on a single node
– best run from a SLURM job

loop_parallel_onenode.m, run_matlab_onenode.m,
run_matlab_onenode.slr

– https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
– sbatch run_matlab_onenode.slr

• Parallel worker pool on a multiple nodes
– must run from inside of Matlab
– start Matlab on interactive node inside of a FastX session
ml matlab

matlab &

– loop_parallel.m, parallel_multinode.m
parallel_multinode

24-Jun-24 Slide 29https://git.io/CHPC-Intro-to-Parallel-Computing

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.slr
https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/parallel_multinode.m

Matlab examples

• In OnDemand open a terminal (Clusters – Notchpeak)
• Git clone the repository
git clone https://github.com/CHPC-UofU/CHPC-presentations.git

cd CHPC-presentations/Intro-to-Parallel-Computing/Matlab-examples/

• Either submit the serial job from terminal, or via
OnDemand

• For the parallel jobs, open Interactive Apps – Matlab and
run through this Matlab

24-Jun-24 Slide 30https://git.io/CHPC-Intro-to-Parallel-Computing

https://github.com/CHPC-UofU/CHPC-presentations.git

R

Threads
• Under the hood threading with specially built (or

Microsoft) R for vector/matrix operations using MKL
• parallel R library
Tasks (processes)
• parallel R library (uses multicore for shared and snow for

distributed parallelism)
• Parallelized *apply functions, e.g. mclapply
• Rmpi library provides MPI like functionality
• Many people run multiple independent R instances in

parallel
https://www.chpc.utah.edu/documentation/software/r-
language.php

24-Jun-24 Slide 31https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/matlab.php
https://www.chpc.utah.edu/documentation/software/matlab.php

Parallel R on a cluster

24-Jun-24 Slide 32

• Load libraries
library(parallel)

library(foreach)

library(doParallel)

• Start R cluster
hostlist <- paste(unlist(read.delim(file="hostlist.txt",
header=F, sep =" ")))

cl <- makeCluster(hostlist)

registerDoParallel(cl)

clusterEvalQ(cl,.libPaths("/uufs/chpc.utah.edu/sys/installdir/
r8/RLibs/4.2.2"))

• Run parallel loop
r <- foreach(icount(trials), .combine=rbind) %dopar% {}

• Stop R cluster
stopCluster(cl)

hostlist.txt comes from a job script
srun -n $SLURM_NTASKS hostname > hostlist.txt

this is only needed if running on multiple nodes

https://git.io/CHPC-Intro-to-Parallel-Computing

R examples

• Parallel R on one node
– best run from a SLURM job

parallel-onenode-iris.R, R-parallel-onenode-iris.slr
– https://git.io/CHPC-Intro-to-Parallel-Computing-R
– sbatch R-parallel-onenode-iris.slr

• Parallel R multiple nodes
– must specify list of nodes where R workers run

parallel-multinode-iris.R, R-parallel-multinode-iris.slr-
– sbatch R-parallel-multinode-iris.slr

• Submit SLURM job directly from R - rslurm
– SLURM-aware apply function, some issues with results

collection
– rslurm-example.R

24-Jun-24 Slide 33https://git.io/CHPC-Intro-to-Parallel-Computing

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/parallel-onenode-iris.R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/R-parallel-onenode-iris.slr
https://git.io/CHPC-Intro-to-Parallel-Computing-R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/parallel-multinode-iris.R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/R-parallel-multinode-iris.slr
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/rslurm-example.R

Python

Threads
• No threads in Python code because of GIL (Global

Intepreter Lock)
• C/Fortran functions can be threaded (e.g. NumPy -

Anaconda, Numba for Nvidia GPUs)
Tasks (processes)
• Several libraries that use MPI under the hood, most

popular is mpi4py
• More-less MPI function compatibility, but slower

communication because of the extra overhead
• Also many other data-parallel libraries, e.g. Dask, Polars
https://www.chpc.utah.edu/documentation/software/python.
php

24-Jun-24 Slide 34https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/matlab.php
https://www.chpc.utah.edu/documentation/software/matlab.php

Python - Jupyter

• Several options
listed at
https://www.chpc.utah.
edu/documentation/soft
ware/jupyterhub.php

• The easiest is to
use Open
OnDemand

24-Jun-24 Slide 35https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/jupyterhub.php
https://www.chpc.utah.edu/documentation/software/jupyterhub.php
https://www.chpc.utah.edu/documentation/software/jupyterhub.php

Python tasks

• Our personal favorite is to ignore all the Python parallel
efforts, divide the data into independent parts and run
multiple Python processes on parts of the data
concurrently

• Only works if data can be split
• Use various approaches for independent parallel

calculations listed at
https://www.chpc.utah.edu/documentation/software/seria
l-jobs.php

• More on this later

24-Jun-24 Slide 36https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/serial-jobs.php
https://www.chpc.utah.edu/documentation/software/serial-jobs.php

Python tasks

• Tasks can also be easily parallelized with the joblib
library

import time, joblib

def long_running_function(i):

 time.sleep(0.1)

 return i

with joblib.parallel_config(backend="loky"):

 joblib.Parallel(verbose=100, n_jobs=4)(

 joblib.delayed(long_running_function)(i) for i
in range(10)

)

24-Jun-24 Slide 37https://git.io/CHPC-Intro-to-Parallel-Computing

https://joblib.readthedocs.io/en/stable/

Python- Dask

• With relatively small effort one can use Dask
• Install Miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-
x86_64.sh

bash ./Miniconda3-latest-Linux-x86_64.sh -b -p
$HOME/software/pkg/miniconda3

mkdir -p $HOME/MyModules/miniconda3

cp
/uufs/chpc.utah.edu/sys/installdir/python/modules/miniconda3/latest.lua
$HOME/MyModules/miniconda3

• Use own miniconda and install Jupyter and Dask
module use $HOME/MyModules

module load miniconda3/latest

conda install jupyter dask "notebook>=6.0"

• Start Open OnDemand Jupyter notebook
– log into ondemand.chpc.utah.edu with CHPC credentials

24-Jun-24 Slide 38https://git.io/CHPC-Intro-to-Parallel-Computing

Python- Dask

• Go to Interactive Apps - Jupyter Notebook on notchpeak
• In the Environment Setup text box, put (my Miniconda3):
module use /uufs/chpc.utah.edu/common/home/u0101881/MyModules

module load miniconda3/dask

• Use notchpeak-shared-short for account and partition, and
select your choice of CPU cores and walltime hours (within
the listed limits). Then hit Launch to submit the job.

• Once the job starts, hit the blue Connect to Jupyter button
• Open one of the following notebooks:

dask_embarrass.ipynb, dask_slurmcluster.ipynb,
dask_slurm_xarray.ipynb

• DASK also allows to submit jobs to SLURM (last 2 examples)

24-Jun-24 Slide 39https://git.io/CHPC-Intro-to-Parallel-Computing

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_embarrass.ipynb
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_slurmcluster.ipynb
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_slurm_xarray.ipynb

Independent calculations

• Different approaches based on the nature of the
calculations
– Runtime length, variability, number of calculations

• Similar runtime, small calculation count
– Shell script in a SLURM job

#!/bin/bash
for ((i=0; i < $SLURM_NTASKS ; i++)); do
 /path_to/myprogram $i &
done
wait

– srun –multi-prog
srun --multi-prog my.conf
cat my.conf
0-11 ./example.sh %t

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php

24-Jun-24 Slide 40https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/documentation/software/serial-jobs.php
https://www.chpc.utah.edu/documentation/software/serial-jobs.php

Variable runtime

• Mini-scheduler inside of a job
– to launch calculations till all are done
– GNU Parallel - https://www.gnu.org/software/parallel/
– TACC Launcher - https://www.tacc.utexas.edu/research-

development/tacc-software/the-launcher
– CHPC Submit -

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php#submit

• Workflow managers
– Nextflow, Snakemake, Pegasus, Swift

• Distributed computing resources
– Open Science Grid - https://opensciencegrid.org/

24-Jun-24 Slide 41https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.gnu.org/software/parallel/
https://www.tacc.utexas.edu/research-development/tacc-software/the-launcher
https://www.tacc.utexas.edu/research-development/tacc-software/the-launcher
https://www.chpc.utah.edu/documentation/software/serial-jobs.php#submit
https://www.chpc.utah.edu/documentation/software/serial-jobs.php#submit
https://opensciencegrid.org/

Debuggers
• Useful for finding bugs in programs
• Several free

 gdb – GNU, text based, limited parallel
 ddd – graphical frontend for gdb

• Commercial that come with compilers
 pgdbg – PGI, graphical, parallel but not intuitive
 pathdb, idb – Pathscale, Intel, text based

• Specialized commercial
 totalview – graphical, parallel, CHPC has a license
 ddt - Distributed Debugging Tool
 Intel Inspector – memory and threading error checker

• How to use:
 http://www.chpc.utah.edu/docs/manuals/software/par_

devel.html

24-Jun-24 Slide 42https://git.io/CHPC-Intro-to-Parallel-Computing

Debuggers - parallel

• Parallel debugging more complex due to interaction
between processes

• DDT is the debugger of choice at CHPC
 Expensive but academia get discount
 How to run it:

 compile with –g flag
 run ddt command
 fill in information about executable, parallelism, …

 Details:
https://www.chpc.utah.edu/documentation/software/debugging

.php

 Further information
https://www.allinea.com/products/ddt

24-Jun-24 Slide 43https://git.io/CHPC-Intro-to-Parallel-Computing

Debuggers – parallel

24-Jun-24 Slide 44https://git.io/CHPC-Intro-to-Parallel-Computing

Profilers

• Measure performance of the code
• Serial profiling

– discover inefficient programming
– computer architecture slowdowns
– compiler optimizations evaluation
– gprof, pgprof, pathopt2, Intel tools

• Parallel profiling
– target is inefficient communication
– Intel Trace Collector and Analyzer, Advisor,

VTune

24-Jun-24 Slide 45https://git.io/CHPC-Intro-to-Parallel-Computing

Profilers - parallel

24-Jun-24 Slide 46https://git.io/CHPC-Intro-to-Parallel-Computing

Libraries
• Use libraries for common operations
• Serial
 BLAS, LAPACK – linear algebra routines
 MKL, BLIS – hardware vendor libraries

• Parallel
 ScaLAPACK, PETSc, FFTW
 MKL – dense and sparse matrices

 Design a new code around existing library
 PETSc, Trilinos,…

24-Jun-24 Slide 47https://git.io/CHPC-Intro-to-Parallel-Computing

Summary

• Shared vs. Distributed memory parallelism
• OpenMP, OpenACC and MPI for low level

parallelism
• Different approaches for higher level

languages
• Many ways to run independent calculations

in parallel
• There are tools for debugging, profiling

24-Jun-24 Slide 48https://git.io/CHPC-Intro-to-Parallel-Computing

To learn more
• CHPC lectures

– https://www.chpc.utah.edu/presentations/index.php
• ACCESS HPC Summer Boot Camp

– OpenMP, OpenACC, MPI
– https://www.youtube.com/XSEDETraining

• Petascale Computing Institute
– Wide range of parallel programming topics
– videos at https://bluewaters.ncsa.illinois.edu/bw-

petascale-computing-2019/agenda
• XSEDE online training

– https://www.xsede.org/web/xup/online-training

24-Jun-24 Slide 49https://git.io/CHPC-Intro-to-Parallel-Computing

https://www.chpc.utah.edu/presentations/index.php
https://www.youtube.com/XSEDETraining
https://bluewaters.ncsa.illinois.edu/bw-petascale-computing-2019/agenda
https://bluewaters.ncsa.illinois.edu/bw-petascale-computing-2019/agenda
https://www.xsede.org/web/xup/online-training

	Introduction to Parallel Computing
	Overview
	How to compute faster
	Computer architectures
	Shared memory
	Distributed memory
	Ways of program execution
	Parallel programming options
	Parallel programming options hierarchy
	Mapping programming options to the hardware
	OpenMP basics
	OpenACC Basics
	MPI Basics
	Program example
	OpenMP program� example
	OpenMP caveats
	OpenACC program� example
	OpenACC caveats
	MPI program example
	MPI program example
	MPI program example
	MPI caveats
	MPI distributions
	Hands on
	But wait, my program is not in C or Fortran
	Cluster running options for Matlab, Python, R
	Matlab
	Matlab tasks
	Matlab examples
	Matlab examples
	R
	Parallel R on a cluster
	R examples
	Python
	Python - Jupyter
	Python tasks
	Python tasks
	Python- Dask
	Python- Dask
	Independent calculations
	Variable runtime
	Debuggers
	Debuggers - parallel
	Debuggers – parallel
	Profilers
	Profilers - parallel
	Libraries
	Summary
	To learn more

