
The Snakemake Workflow Manager
Brett Milash

Center for High Performance Computing
University of Utah

https://snakemake.readthedocs.io/en/stable/ 1

A workflow manager is software that:
• Conducts a complex work flow or

analysis
• Follows dependencies from results back

to configuration and data files
• Executes statements step-by-step to

carry out work flow

https://snakemake.readthedocs.io/en/stable/ 2

Why use a workflow manager?

• Human efficiency and convenience
• Computational efficiency – only the required steps are executed

• Great when your cluster job is preempted
• Reproducibility
• Portability between clusters, institutions
• Modularity – re-use and standardization

https://snakemake.readthedocs.io/en/stable/ 3

Why choose snakemake?

Over 100 different workflow managers:
https://github.com/pditommaso/awesome-pipeline

Snakemake is:

qActively used and developed

qCan be configured for local and/or cluster execution

qNative SLURM support

qNo significant system administration support required

qGeneral purpose (not just for bioinformatics, for example)

qSignificant functionality bang for your learning buck

https://snakemake.readthedocs.io/en/stable/ 4

https://github.com/pditommaso/awesome-pipeline

Installation options

• Use the CHPC module:
• module load snakemake/5.6.0

• Install your own using pip:
• pip install --user snakemake
• export PATH=$HOME/.local/bin:$PATH

• Install your own using anaconda:
• module load anaconda3
• conda install –c bioconda –c conda-forge snakemake

https://snakemake.readthedocs.io/en/stable/ 5

Snakemake is a better “make”

hello_world: hello_world.o
gcc -o hello_world hello_world.o

hello_world.o: hello_world.c hello_world.h
gcc -c hello_world.c

Rule

Target (output)

Dependencies (input)

Action

Classical Makefile example:

https://snakemake.readthedocs.io/en/stable/ 6

Snakemake workflows are built out of rules

rule link:
input: "hello_world.o"
output: "hello_world”
message: “Rule {rule} linking .o file {input}"
shell: "gcc -o {output} {input}”

Rules can have:
• names
• inputs
• outputs
• actions (shell or python)
Rules:
• are linked implicitly
• (or explicitly)
• can emit messages
• are executed in parallel if possible
• are executed locally or on a cluster
The first rule defines the default “target”
for the workflow

https://snakemake.readthedocs.io/en/stable/ 7

Snakefile syntax

• Snakemake work flows (”snakefiles”) are python code
• All the python syntax rules apply:

• Input and output file names in quotes
• Shell commands in quotes
• Whitespace / indentation is significant
• Use either tabs or spaces (not both)

• Your snakefiles can include blocks of python code

https://snakemake.readthedocs.io/en/stable/ 8

Rule inputs

• Inputs are one or more file names, in quotes, comma-separated
• Inputs are optional
• Inputs can have “symbolic” names

https://snakemake.readthedocs.io/en/stable/ 9

rule align:
input: index=“hg19”, data=“sample1.fastq”
output: ”sample1.sam”
shell: “bwa mem {input.index} {input.data} –o {output}”
message: “Rule {rule} aligning input file {input.data}”

Rule outputs

• Same as inputs: one or more file names, in quotes, comma-separated
• Same as inputs: can have ”symbolic names”
• Outputs are optional - common in top-level rule that simply checks if

inputs are present.

https://snakemake.readthedocs.io/en/stable/ 10

rule align:
input: index=“hg19”, data=“sample1.fastq”
output: ”sample1.sam”
shell: “bwa mem {input.index} {input.data} –o {output}”
message: “Rule {rule} aligning input file {input.data}”

Rule actions: the “shell:” section

• This is where you encode the actual work of the work flow
• By default: /bin/bash in strict mode (set –euo pipefail)
• Multi-line shell statements: use triple-quotes
• Can load modules, only affects the current rule.

https://snakemake.readthedocs.io/en/stable/ 11

rule link:
input: "hello_world.o"
output: "hello_world"
shell: """

module load gcc/6.1.0
gcc -o {output} {input}
"""

Rule “run:” section: action as python code
• Instead of bash, the action can be written in python
• Put this in the “run:” section of the rule
• Note there are no quotes around the python code

https://snakemake.readthedocs.io/en/stable/ 12

rule usercount:
input: "userfile.txt"
output: "users.count"
run:

users=set()
with open(input[0]) as infile:

for line in infile:
unid=line.split()[0]
users.add(unid)

with open(output[0],'w') as outfile:
print(f"There are {len(users)} users.",file=outfile)

Rule messages
• Rules can emit messages with the “message:” section
• Messages are optional
• Really useful for monitoring your workflow
• Can access the inputs, outputs with {input}, {output}
• Can access the rule name as {rule}

https://snakemake.readthedocs.io/en/stable/ 13

rule align:
input: index=“hg19”, data=“sample1.fastq”
output: ”sample1.sam”
shell: “bwa mem {input.index} {input.data} –o {output}”
message: “Rule {rule} processing input file {input.data}”

Snakemake command line arguments

First, need to load the module:
$ module load snakemake/5.6.0

Run snakemake on default ”Snakefile”, default (ie first) rule:
$ snakemake

Run snakemake on non-default snakefile:
$ snakemake –s my_snakefile

Run snakemake on non-default rule:
$ snakemake rule_name

Read the snakemake help:
$ snakemake --help

https://snakemake.readthedocs.io/en/stable/ 14

Exercise1 - Simple workflow

See the exercise 1 instructions here:

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/-/tree/master/Exercises/Exercise1

https://snakemake.readthedocs.io/en/stable/ 15

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/-/tree/master/Exercises/Exercise1

Graphical output
• Rule graph

• Shows in general how rules depend on one another, but not the actual inputs/outputs
• snakemake –s snakefile --rulegraph | dot –Tpng > rulegraph.png

• Directed Acyclic Graph (DAG)
• all targets represented
• Completed rules have dashed outline
• snakemake –s snakefile --dag | dot –Tpng > dag.png

https://snakemake.readthedocs.io/en/stable/ 16

Directories as input or output

• In snakemake version 5.0 or later:
• Directories as input or output must be specified with directory()

• input: directory(“data_directory”), “data_file”

• In older version of snakemake:
• Directories as input or output are just named like regular files

• input: “data_directory”, “data_file”

https://snakemake.readthedocs.io/en/stable/ 17

Wildcards: filename patterns

• These make rules reusable, not tied to specific files

• Rules with wildcards are ideal for parallel execution

How to do it:
• Create one rule that handles a single input -> output action using {variable} as

a placeholder for the variable part of the input and output file name(s). This
acts as a template.

• Create another rule whose input lists all the template rule’s output files.
• You can use the expand() function for this.
• Python lists and list comprehension are useful here.

https://snakemake.readthedocs.io/en/stable/ 18

Snakemake wildcard example
Calculate the MD5 checksum for each sample’s .txt file.
Here are the sample names embedded in the file names:
samples=[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’]

rule all_checksums:
input: expand("{sample}.md5", sample=samples)
This produces the list [“A.md5”, “B.md5”, ... “F.md5”]

rule one_checksum:
input: "{sample}.txt"
output: "{sample}.md5"
shell: "md5sum {input} > {output}”

https://snakemake.readthedocs.io/en/stable/ 19

Exercise 2: Workflow with wildcards

See the exercise 2 instructions here:

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/-/tree/master/Exercises/Exercise2

https://snakemake.readthedocs.io/en/stable/ 20

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/-/tree/master/Exercises/Exercise2

Snakemake on a cluster

• Any snakemake workflow can run on a cluster:
snakemake --cluster-config cluster.yaml --jobs 20 …

• Cluster configuration file can be in JSON or YAML format
• The catch is that we must tell snakemake how to start a job:

• --cluster “sbatch –A {cluster.account} –p {cluster.partition}”

https://snakemake.readthedocs.io/en/stable/ 21

Cluster configuration

• Basic cluster configuration file:
cluster.yaml - cluster configuration for my snakemake job.
__default__:

partition: slurm_partition
account: slurm_account
time: 1:00:00
nodes: 1

• The __default__ config applies to all rules
• Can override default with rule-specific configurations

image_processing:
partition: kingspeak_gpu
account: kingspeak_gpu

https://snakemake.readthedocs.io/en/stable/ 22

Local rules

• When running on a cluster, may want to specify some rules NOT run
on the cluster
• localrules: rule1, rule2, rule3
• Snakemake knows to run rules without an action (e.g. “shell:”) locally.

https://snakemake.readthedocs.io/en/stable/ 23

Watching your workflow run on the cluster

• Run the squeue command to see your SLURM jobs:
• watch –n 3 squeue -M all -u $USER # Check jobs on all clusters every 3s.

• You can get fancy with the output:
• watch –n 3 squeue -M all 3 -u $USER -o "%.6i %.10P %.7a %.20j %.2t %.6M %R"

https://snakemake.readthedocs.io/en/stable/ 24

Snakemake exercise 3

• See the exercise 3 instructions here:

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/tree/master/Exercises/Exercise3

https://snakemake.readthedocs.io/en/stable/ 25

https://gitlab.chpc.utah.edu/bmilash/workflows-with-snakemake/tree/master/Exercises/Exercise3

Modular workflows
Snakefile.qc
rule summarized_qc:

input: …
output: touch(“qc.done”)
shell: …

rule qc_one_sample:
input: …
output: …
shell: …

rule raw_sample_qc:
input: …
output: …

In main Snakefile:
include: “Snakefile.qc”

https://snakemake.readthedocs.io/en/stable/ 26

Developing complex workflows

1. Define “skeleton” of workflow, link rules together using touch().
2. Start at beginning, implementing one rule at a time, testing as you

go.
3. Use a small data set for testing, fast feedback
4. Implement the cluster configuration
5. Re-test
6. Run it with real data set

https://snakemake.readthedocs.io/en/stable/ 27

Granularity

• Fine-grained
• Many rules, simple shell statements
• Efficient for local rules, easy debugging
• Inefficient for cluster jobs, as each rule requires submitting a job

• Coarse-grained
• Few rules, complex shell statements
• More efficient on clusters

https://snakemake.readthedocs.io/en/stable/ 28

Handling batches

• On a cluster, the snakemake paradigm maps the execution of one rule
to one SLURM job – this may not fit your work flow well
• Rule execution may be too small to fully occupy a node
• Wait time in the SLURM queue on a busy cluster

• Solutions:
• Write rules that process batches of samples or values
• Use shared partitions in SLURM

https://snakemake.readthedocs.io/en/stable/ 29

Snakemake is container-friendly

• Snakemake supports running code in containers using singularity
• See: https://snakemake.readthedocs.io/...#running-jobs-in-containers

https://snakemake.readthedocs.io/en/stable/ 30

https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html?highlight=containers

Snakemake may not be right for you

• What if your inputs and outputs aren’t files?

• What if your cluster doesn’t use SLURM or LSF?

• HTCondor (Open Science Grid: > 1.2 billion core hours last year)

• What if your workflow changes?

• nextflow: https://www.nextflow.io/

• non-file inputs and outputs

• support for HTCondor (OSG) and many other schedulers

• workflow file is part of the workflow – when a rule changes, it gets re-run

https://snakemake.readthedocs.io/en/stable/ 31

