Skip to content

New contentCHPC has a new page summarizing machine learning and artifical intelligence resources.

Center for High Performance Computing

Research Computing and Data Support for the University

In addition to deploying and operating high-performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, advanced networking, and more.

If you are new to the CHPC, the best place to learn about CHPC resources and policies is our Getting Started page.

Have a question? Please check our Frequently Asked Questions page and contact us if you require assistance or have further questions or concerns.

Upcoming Events:

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Realistic five compartment (skin, skull, CSF, gray matter, white matter) finite element head model

Influence of Uncertainties in the Head Tissue Conductivities on the EEG Forward Problem

By James Vorwerk1, Carsten H. Wolters2, and Christopher R. Butson1

1Scientific Computing and Imaging (SCI) Institute, University of Utah and 2Institute for Biomagnetism and Biosignalanalysis, University of Münster

For accurate EEG [electroencepahlography] source analysis, it is necessary to solve the forward problem of EEG as exact as possible. We investigate the influence of the uncertainty with regard to the conductivity values of the different conductive compartments of the human head on the EEG forward and inverse problem. The goal is to identify for which of these compartments varying conductivity values have the strongest influence, so that these conductivity values can be individually calibrated in future studies. For the investigated source in the somatosensory cortex, the skull conductivity clearly has the strongest influence, while white and gray matter conductivities have a very low influence. If possible, an individual calibration of the skull conductivity should therefore be performed. The feasibility of a calibration of further conductivity values based on SEPs [somatosensory evoked potentials] is questionable given the dominance of the skull conductivity. This study shows that besides the geometrical modeling of the conductive compartments of the human head, also the conductivity values assumed for these compartments have a strong influence in EEG source localization.

System Status

General Environment

last update: 2021-06-10 08:53:04
General Nodes
system cores % util.
kingspeak Status Unavailable
notchpeak Status Unavailable
lonepeak Status Unavailable
Owner/Restricted Nodes
system cores % util.
ash Status Unavailable
notchpeak Status Unavailable
kingspeak Status Unavailable
lonepeak Status Unavailable

Protected Environment

last update: 2021-06-10 08:50:02
General Nodes
system cores % util.
redwood Status Unavailable
Owner/Restricted Nodes
system cores % util.
redwood Status Unavailable


Cluster Utilization

Last Updated: 9/3/24