Skip to content

CHPC - Research Computing and Data Support for the University

In addition to deploying and operating high performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, and advanced networking.

If you are new to CHPC, the best place to start to get more information on CHPC resources and policies is our Getting Started page.

Upcoming Events:

Allocation Requests for Summer 2024 are Due June 1st, 2024

Posted May 1st, 2024

CHPC Downtime: Tuesday March 5 starting at 7:30am

Posted February 8th, 2024

Two upcoming security related changes

Posted February 6th, 2024

Allocation Requests for Spring 2024 are Due March 1st, 2024

Posted February 1st, 2024

CHPC ANNOUNCEMENT: Change in top level home directory permission settings

Posted December 14th, 2023

CHPC Spring 2024 Presentation Schedule Now Available

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


Posted September 22, 2023


Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Applying Modern Tools of Data Analysis to Current Challenges in Chemistry

By Jacquelyne Read and Matthew Sigman

 Department of Chemistry, University of Utah

What if there were no such thing as "bad data"? In this case, we are not referring to the quality of the data, but the experimental outcome. In the field of asymmetric catalysis, a flourishing area in organic chemistry, a central goal is to develop reactions are able to form one enantiomer (a chiral molecule which has a non-superimposable mirror image) of product in preference to the other enantio-mer possible. A helpful analogy to understand the concept of enantiomers is the right and left hand—mirror images, but not identical. Enantioselective reactions have many important applications, such as the more efficient synthesis of drug molecules, which often need to be made as just one enantiomer because different enantiomers sometimes result in drastically different biological responses. Often, when enantioselective reactions are published, only data meeting or exceeding the gold standard of 95% desired enantiomer to 5% undesired enantiomer are reported. This results in useful, but non-optimal, data never being published.

The Sigman lab takes a different approach. We seek to make use of a wider range of data collected during the reaction optimization process because results showing low enantioselectivity and high enantioselectivity can be equally information-rich and help us learn about a given reaction. Our workflow involves collecting molecular properties (such as size, shape, and electronic nature) relevant to a reaction we seek to study. These properties are then used as parameters in a multivariable linear regression algorithm and correlated to the experimentally determined reaction selectivity. The resulting equations are applied to the prediction of molecules should lead to higher (and sometimes lower) enantioselectivity, which are then synthesized and validated experimentally. Ultimately, a deeper understanding of the reaction can be garnered through analysis of the statistical model. This workflow has been successfully applied to reaction properties beyond enantioselectivity, such as regioselectivity (where a reaction occurs on a given molecule) and rates of chemical processes, which will be discussed further in the examples below [in the original newsletter article]. Central to our technology is the calculation of molecular properties using density functional theory (DFT), which is accomplished using the computational resources of the CHPC, among others.

Read more in the Spring 2019 newsletter.

System Status

General Environment

last update: 2021-06-10 08:53:04
General Nodes
system cores % util.
kingspeak Status Unavailable
notchpeak Status Unavailable
lonepeak Status Unavailable
Owner/Restricted Nodes
system cores % util.
ash Status Unavailable
notchpeak Status Unavailable
kingspeak Status Unavailable
lonepeak Status Unavailable

Protected Environment

last update: 2021-06-10 08:50:02
General Nodes
system cores % util.
redwood Status Unavailable
Owner/Restricted Nodes
system cores % util.
redwood Status Unavailable

Cluster Utilization

Last Updated: 5/1/24